Bivariate Generalized Shifted Gegenbauer Orthogonal System

For K0,K1≥0, λ>−1/2, we examine Cr∗λ,K0,K1x, generalized shifted Gegenbauer orthogonal polynomials, with reference to the weight Wλ,K0,K1x=2λΓ2λ/Γλ+1/22x−x2λ−1/2Ix∈0,1dx+K0δ0+K1δ1, where the indicator function is denoted by Ix∈0,1 and δx indicates the Dirac δ−measure. Then, we construct a bivaria...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohammad A. Alqudah, Maalee N. Almheidat, Tareq Hamadneh
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Journal of Mathematics
Online Access:http://dx.doi.org/10.1155/2021/5563032
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832560134042157056
author Mohammad A. Alqudah
Maalee N. Almheidat
Tareq Hamadneh
author_facet Mohammad A. Alqudah
Maalee N. Almheidat
Tareq Hamadneh
author_sort Mohammad A. Alqudah
collection DOAJ
description For K0,K1≥0, λ>−1/2, we examine Cr∗λ,K0,K1x, generalized shifted Gegenbauer orthogonal polynomials, with reference to the weight Wλ,K0,K1x=2λΓ2λ/Γλ+1/22x−x2λ−1/2Ix∈0,1dx+K0δ0+K1δ1, where the indicator function is denoted by Ix∈0,1 and δx indicates the Dirac δ−measure. Then, we construct a bivariate generalized shifted Gegenbauer orthogonal system ℭn,r,d∗λ,K0,K1u,v,w over a triangular domain T, with reference to a bivariate measure Wλ,γ,K0,K1u,v,w=Γ2λ+1/Γλ+1/22uλ−1/21−vλ−1/21−wγ−1Iu∈0,1−wIw∈0,1dudw+K0δ0u+K1δw−1u, which is given explicitly in the Bézier form as ℭn,r,d∗λ,K0,K1u,v,w=∑i+j+k=nai,j,kn,r,dBi,j,knu,v,w. In addition, for d=0,…,k, r=0,1,…,n, and n∈0∪ℕ, we write the coefficients ai,j,kn,r,d in closed form and produce an equation that generates the coefficients recursively.
format Article
id doaj-art-b45181c6b94f45718db40da631812204
institution Kabale University
issn 2314-4629
2314-4785
language English
publishDate 2021-01-01
publisher Wiley
record_format Article
series Journal of Mathematics
spelling doaj-art-b45181c6b94f45718db40da6318122042025-02-03T01:28:26ZengWileyJournal of Mathematics2314-46292314-47852021-01-01202110.1155/2021/55630325563032Bivariate Generalized Shifted Gegenbauer Orthogonal SystemMohammad A. Alqudah0Maalee N. Almheidat1Tareq Hamadneh2German Jordanian University, Amman 11180, JordanDepartment of Mathematics, University of Petra, Amman 11196, JordanDepartment of Mathematics, Al-Zaytoonah University of Jordan, P. O. Box 130, Amman, JordanFor K0,K1≥0, λ>−1/2, we examine Cr∗λ,K0,K1x, generalized shifted Gegenbauer orthogonal polynomials, with reference to the weight Wλ,K0,K1x=2λΓ2λ/Γλ+1/22x−x2λ−1/2Ix∈0,1dx+K0δ0+K1δ1, where the indicator function is denoted by Ix∈0,1 and δx indicates the Dirac δ−measure. Then, we construct a bivariate generalized shifted Gegenbauer orthogonal system ℭn,r,d∗λ,K0,K1u,v,w over a triangular domain T, with reference to a bivariate measure Wλ,γ,K0,K1u,v,w=Γ2λ+1/Γλ+1/22uλ−1/21−vλ−1/21−wγ−1Iu∈0,1−wIw∈0,1dudw+K0δ0u+K1δw−1u, which is given explicitly in the Bézier form as ℭn,r,d∗λ,K0,K1u,v,w=∑i+j+k=nai,j,kn,r,dBi,j,knu,v,w. In addition, for d=0,…,k, r=0,1,…,n, and n∈0∪ℕ, we write the coefficients ai,j,kn,r,d in closed form and produce an equation that generates the coefficients recursively.http://dx.doi.org/10.1155/2021/5563032
spellingShingle Mohammad A. Alqudah
Maalee N. Almheidat
Tareq Hamadneh
Bivariate Generalized Shifted Gegenbauer Orthogonal System
Journal of Mathematics
title Bivariate Generalized Shifted Gegenbauer Orthogonal System
title_full Bivariate Generalized Shifted Gegenbauer Orthogonal System
title_fullStr Bivariate Generalized Shifted Gegenbauer Orthogonal System
title_full_unstemmed Bivariate Generalized Shifted Gegenbauer Orthogonal System
title_short Bivariate Generalized Shifted Gegenbauer Orthogonal System
title_sort bivariate generalized shifted gegenbauer orthogonal system
url http://dx.doi.org/10.1155/2021/5563032
work_keys_str_mv AT mohammadaalqudah bivariategeneralizedshiftedgegenbauerorthogonalsystem
AT maaleenalmheidat bivariategeneralizedshiftedgegenbauerorthogonalsystem
AT tareqhamadneh bivariategeneralizedshiftedgegenbauerorthogonalsystem