Bounds for the Combinations of Neuman-Sándor, Arithmetic, and Second Seiffert Means in terms of Contraharmonic Mean

We give the greatest values r1, r2 and the least values s1, s2 in (1/2, 1) such that the double inequalities C(r1a+(1-r1)b,r1b+(1-r1)a)<αA(a,b)+(1-α)T(a,b)<C(s1a+(1-s1)b,s1b+(1-s1)a) and C(r2a+(1-r2)b,r2b+(1-r2)a)<αA(a,b)+(1-α)M(a,b)<C(s2a+(1-s2)b,s2b+(1-s2)a) hold for any α∈(0,1) and al...

Full description

Saved in:
Bibliographic Details
Main Authors: Zai-Yin He, Wei-Mao Qian, Yun-Liang Jiang, Ying-Qing Song, Yu-Ming Chu
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2013/903982
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832545327197978624
author Zai-Yin He
Wei-Mao Qian
Yun-Liang Jiang
Ying-Qing Song
Yu-Ming Chu
author_facet Zai-Yin He
Wei-Mao Qian
Yun-Liang Jiang
Ying-Qing Song
Yu-Ming Chu
author_sort Zai-Yin He
collection DOAJ
description We give the greatest values r1, r2 and the least values s1, s2 in (1/2, 1) such that the double inequalities C(r1a+(1-r1)b,r1b+(1-r1)a)<αA(a,b)+(1-α)T(a,b)<C(s1a+(1-s1)b,s1b+(1-s1)a) and C(r2a+(1-r2)b,r2b+(1-r2)a)<αA(a,b)+(1-α)M(a,b)<C(s2a+(1-s2)b,s2b+(1-s2)a) hold for any α∈(0,1) and all a,b>0 with a≠b, where A(a,b), M(a,b), C(a,b), and T(a,b) are the arithmetic, Neuman-Sándor, contraharmonic, and second Seiffert means of a and b, respectively.
format Article
id doaj-art-b42383bec2404b17ac04b4a9ecfe0f16
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2013-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-b42383bec2404b17ac04b4a9ecfe0f162025-02-03T07:26:09ZengWileyAbstract and Applied Analysis1085-33751687-04092013-01-01201310.1155/2013/903982903982Bounds for the Combinations of Neuman-Sándor, Arithmetic, and Second Seiffert Means in terms of Contraharmonic MeanZai-Yin He0Wei-Mao Qian1Yun-Liang Jiang2Ying-Qing Song3Yu-Ming Chu4Department of Mathematics, Huzhou Teachers College, Huzhou 313000, ChinaSchool of Distance Education, Huzhou Broadcast and TV University, Huzhou 313000, ChinaSchool of Information and Engineering, Huzhou Teachers College, Huzhou 313000, ChinaSchool of Mathematics and Computation Science, Hunan City University, Yiyang 413000, ChinaSchool of Mathematics and Computation Science, Hunan City University, Yiyang 413000, ChinaWe give the greatest values r1, r2 and the least values s1, s2 in (1/2, 1) such that the double inequalities C(r1a+(1-r1)b,r1b+(1-r1)a)<αA(a,b)+(1-α)T(a,b)<C(s1a+(1-s1)b,s1b+(1-s1)a) and C(r2a+(1-r2)b,r2b+(1-r2)a)<αA(a,b)+(1-α)M(a,b)<C(s2a+(1-s2)b,s2b+(1-s2)a) hold for any α∈(0,1) and all a,b>0 with a≠b, where A(a,b), M(a,b), C(a,b), and T(a,b) are the arithmetic, Neuman-Sándor, contraharmonic, and second Seiffert means of a and b, respectively.http://dx.doi.org/10.1155/2013/903982
spellingShingle Zai-Yin He
Wei-Mao Qian
Yun-Liang Jiang
Ying-Qing Song
Yu-Ming Chu
Bounds for the Combinations of Neuman-Sándor, Arithmetic, and Second Seiffert Means in terms of Contraharmonic Mean
Abstract and Applied Analysis
title Bounds for the Combinations of Neuman-Sándor, Arithmetic, and Second Seiffert Means in terms of Contraharmonic Mean
title_full Bounds for the Combinations of Neuman-Sándor, Arithmetic, and Second Seiffert Means in terms of Contraharmonic Mean
title_fullStr Bounds for the Combinations of Neuman-Sándor, Arithmetic, and Second Seiffert Means in terms of Contraharmonic Mean
title_full_unstemmed Bounds for the Combinations of Neuman-Sándor, Arithmetic, and Second Seiffert Means in terms of Contraharmonic Mean
title_short Bounds for the Combinations of Neuman-Sándor, Arithmetic, and Second Seiffert Means in terms of Contraharmonic Mean
title_sort bounds for the combinations of neuman sandor arithmetic and second seiffert means in terms of contraharmonic mean
url http://dx.doi.org/10.1155/2013/903982
work_keys_str_mv AT zaiyinhe boundsforthecombinationsofneumansandorarithmeticandsecondseiffertmeansintermsofcontraharmonicmean
AT weimaoqian boundsforthecombinationsofneumansandorarithmeticandsecondseiffertmeansintermsofcontraharmonicmean
AT yunliangjiang boundsforthecombinationsofneumansandorarithmeticandsecondseiffertmeansintermsofcontraharmonicmean
AT yingqingsong boundsforthecombinationsofneumansandorarithmeticandsecondseiffertmeansintermsofcontraharmonicmean
AT yumingchu boundsforthecombinationsofneumansandorarithmeticandsecondseiffertmeansintermsofcontraharmonicmean