Engineered Passive Glucose Uptake in Pseudomonas taiwanensis VLB120 Increases Resource Efficiency for Bioproduction

ABSTRACT Glucose is the most abundant monosaccharide and a principal substrate in biotechnological production processes. In Pseudomonas, this sugar is either imported directly into the cytosol or first oxidised to gluconate in the periplasm. While gluconate is taken up via a proton‐driven symporter,...

Full description

Saved in:
Bibliographic Details
Main Authors: Tobias Schwanemann, Nicolas Krink, Pablo I. Nikel, Benedikt Wynands, Nick Wierckx
Format: Article
Language:English
Published: Wiley 2025-01-01
Series:Microbial Biotechnology
Subjects:
Online Access:https://doi.org/10.1111/1751-7915.70095
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832576360420212736
author Tobias Schwanemann
Nicolas Krink
Pablo I. Nikel
Benedikt Wynands
Nick Wierckx
author_facet Tobias Schwanemann
Nicolas Krink
Pablo I. Nikel
Benedikt Wynands
Nick Wierckx
author_sort Tobias Schwanemann
collection DOAJ
description ABSTRACT Glucose is the most abundant monosaccharide and a principal substrate in biotechnological production processes. In Pseudomonas, this sugar is either imported directly into the cytosol or first oxidised to gluconate in the periplasm. While gluconate is taken up via a proton‐driven symporter, the import of glucose is mediated by an ABC‐type transporter, and hence both require energy. In this study, we heterologously expressed the energy‐independent glucose facilitator protein (Glf) from Zymomonas mobilis to replace the native energy‐demanding glucose transport systems, thereby increasing the metabolic energy efficiency. The implementation of passive glucose uptake in engineered production strains significantly increased product titres and yields of the two different aromatic products, cinnamic acid (+10%–15%) and resveratrol (+26%; 18.1 mg/g) in batch cultures.
format Article
id doaj-art-b3de997a3e104094885b3ec22df7a561
institution Kabale University
issn 1751-7915
language English
publishDate 2025-01-01
publisher Wiley
record_format Article
series Microbial Biotechnology
spelling doaj-art-b3de997a3e104094885b3ec22df7a5612025-01-31T06:26:36ZengWileyMicrobial Biotechnology1751-79152025-01-01181n/an/a10.1111/1751-7915.70095Engineered Passive Glucose Uptake in Pseudomonas taiwanensis VLB120 Increases Resource Efficiency for BioproductionTobias Schwanemann0Nicolas Krink1Pablo I. Nikel2Benedikt Wynands3Nick Wierckx4Institute of Bio‐ and Geosciences, IBG‐1: Biotechnology Forschungszentrum Jülich GmbH Jülich GermanyThe Novo Nordisk Foundation Center for Biosustainability Technical University of Denmark Kongens Lyngby DenmarkThe Novo Nordisk Foundation Center for Biosustainability Technical University of Denmark Kongens Lyngby DenmarkInstitute of Bio‐ and Geosciences, IBG‐1: Biotechnology Forschungszentrum Jülich GmbH Jülich GermanyInstitute of Bio‐ and Geosciences, IBG‐1: Biotechnology Forschungszentrum Jülich GmbH Jülich GermanyABSTRACT Glucose is the most abundant monosaccharide and a principal substrate in biotechnological production processes. In Pseudomonas, this sugar is either imported directly into the cytosol or first oxidised to gluconate in the periplasm. While gluconate is taken up via a proton‐driven symporter, the import of glucose is mediated by an ABC‐type transporter, and hence both require energy. In this study, we heterologously expressed the energy‐independent glucose facilitator protein (Glf) from Zymomonas mobilis to replace the native energy‐demanding glucose transport systems, thereby increasing the metabolic energy efficiency. The implementation of passive glucose uptake in engineered production strains significantly increased product titres and yields of the two different aromatic products, cinnamic acid (+10%–15%) and resveratrol (+26%; 18.1 mg/g) in batch cultures.https://doi.org/10.1111/1751-7915.70095ATP consumptionglucose transportmetabolic engineeringPseudomonasstrain optimization
spellingShingle Tobias Schwanemann
Nicolas Krink
Pablo I. Nikel
Benedikt Wynands
Nick Wierckx
Engineered Passive Glucose Uptake in Pseudomonas taiwanensis VLB120 Increases Resource Efficiency for Bioproduction
Microbial Biotechnology
ATP consumption
glucose transport
metabolic engineering
Pseudomonas
strain optimization
title Engineered Passive Glucose Uptake in Pseudomonas taiwanensis VLB120 Increases Resource Efficiency for Bioproduction
title_full Engineered Passive Glucose Uptake in Pseudomonas taiwanensis VLB120 Increases Resource Efficiency for Bioproduction
title_fullStr Engineered Passive Glucose Uptake in Pseudomonas taiwanensis VLB120 Increases Resource Efficiency for Bioproduction
title_full_unstemmed Engineered Passive Glucose Uptake in Pseudomonas taiwanensis VLB120 Increases Resource Efficiency for Bioproduction
title_short Engineered Passive Glucose Uptake in Pseudomonas taiwanensis VLB120 Increases Resource Efficiency for Bioproduction
title_sort engineered passive glucose uptake in pseudomonas taiwanensis vlb120 increases resource efficiency for bioproduction
topic ATP consumption
glucose transport
metabolic engineering
Pseudomonas
strain optimization
url https://doi.org/10.1111/1751-7915.70095
work_keys_str_mv AT tobiasschwanemann engineeredpassiveglucoseuptakeinpseudomonastaiwanensisvlb120increasesresourceefficiencyforbioproduction
AT nicolaskrink engineeredpassiveglucoseuptakeinpseudomonastaiwanensisvlb120increasesresourceefficiencyforbioproduction
AT pabloinikel engineeredpassiveglucoseuptakeinpseudomonastaiwanensisvlb120increasesresourceefficiencyforbioproduction
AT benediktwynands engineeredpassiveglucoseuptakeinpseudomonastaiwanensisvlb120increasesresourceefficiencyforbioproduction
AT nickwierckx engineeredpassiveglucoseuptakeinpseudomonastaiwanensisvlb120increasesresourceefficiencyforbioproduction