An Adaptive Aggregation Scheduling Algorithm Based on the Grid Partition in Large-Scale Wireless Sensor Networks

Data aggregation algorithm aims to reduce the redundant information by gathering the sensed data, save energy, and prolong the lifetime of the network. However, the data aggregation technology will increase the network transmission delay of wireless sensor networks. Minimum-latency aggregation sched...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaogang Qi, Lifang Liu, Gengzhong Zheng, Mande Xie
Format: Article
Language:English
Published: Wiley 2015-10-01
Series:International Journal of Distributed Sensor Networks
Online Access:https://doi.org/10.1155/2015/283209
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Data aggregation algorithm aims to reduce the redundant information by gathering the sensed data, save energy, and prolong the lifetime of the network. However, the data aggregation technology will increase the network transmission delay of wireless sensor networks. Minimum-latency aggregation scheduling is designed to minimize the number of scheduled time slots to perform an aggregation. In this paper, we present an Adaptive Aggregation Scheduling Algorithm based on the Grid Partition (AASA-GP) in large-scale wireless sensor networks. By dividing the network into grids based on the geographical information, we allocate the channels according to the grid coordinates. Nodes with the same grid coordinates use the same channel and the adjacent grids use the different channels, so we can effectively avoid the wireless media transmission interference, increase the parallel transfer rate, and reduce the aggregation latency. Our extensive evaluation results demonstrate the superiority of the AASA-GP. For small-scale networks, the resultant latency is comparable with the best practice, and it is more suitable for large-scale wireless sensor networks.
ISSN:1550-1477