Analytical Approximate Solutions for the Cubic-Quintic Duffing Oscillator in Terms of Elementary Functions

Accurate approximate closed-form solutions for the cubic-quintic Duffing oscillator are obtained in terms of elementary functions. To do this, we use the previous results obtained using a cubication method in which the restoring force is expanded in Chebyshev polynomials and the original nonlinear d...

Full description

Saved in:
Bibliographic Details
Main Authors: A. Beléndez, M. L. Alvarez, J. Francés, S. Bleda, T. Beléndez, A. Nájera, E. Arribas
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2012/286290
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832558126301184000
author A. Beléndez
M. L. Alvarez
J. Francés
S. Bleda
T. Beléndez
A. Nájera
E. Arribas
author_facet A. Beléndez
M. L. Alvarez
J. Francés
S. Bleda
T. Beléndez
A. Nájera
E. Arribas
author_sort A. Beléndez
collection DOAJ
description Accurate approximate closed-form solutions for the cubic-quintic Duffing oscillator are obtained in terms of elementary functions. To do this, we use the previous results obtained using a cubication method in which the restoring force is expanded in Chebyshev polynomials and the original nonlinear differential equation is approximated by a cubic Duffing equation. Explicit approximate solutions are then expressed as a function of the complete elliptic integral of the first kind and the Jacobi elliptic function cn. Then we obtain other approximate expressions for these solutions, which are expressed in terms of elementary functions. To do this, the relationship between the complete elliptic integral of the first kind and the arithmetic-geometric mean is used and the rational harmonic balance method is applied to obtain the periodic solution of the original nonlinear oscillator.
format Article
id doaj-art-b33d76baffd74f07bfa181da2eca70c8
institution Kabale University
issn 1110-757X
1687-0042
language English
publishDate 2012-01-01
publisher Wiley
record_format Article
series Journal of Applied Mathematics
spelling doaj-art-b33d76baffd74f07bfa181da2eca70c82025-02-03T01:33:10ZengWileyJournal of Applied Mathematics1110-757X1687-00422012-01-01201210.1155/2012/286290286290Analytical Approximate Solutions for the Cubic-Quintic Duffing Oscillator in Terms of Elementary FunctionsA. Beléndez0M. L. Alvarez1J. Francés2S. Bleda3T. Beléndez4A. Nájera5E. Arribas6Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, Apartado 99, 03080 Alicante, SpainDepartamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, Apartado 99, 03080 Alicante, SpainDepartamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, Apartado 99, 03080 Alicante, SpainDepartamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, Apartado 99, 03080 Alicante, SpainDepartamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, Apartado 99, 03080 Alicante, SpainDepartamento de Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha, C/Almansa No. 14, 02006 Albacete, SpainDepartamento de Física Aplicada, Escuela Superior de Ingeniería Informática, Universidad de Castilla-La Mancha, Avenida de España s/n, 02071 Albacete, SpainAccurate approximate closed-form solutions for the cubic-quintic Duffing oscillator are obtained in terms of elementary functions. To do this, we use the previous results obtained using a cubication method in which the restoring force is expanded in Chebyshev polynomials and the original nonlinear differential equation is approximated by a cubic Duffing equation. Explicit approximate solutions are then expressed as a function of the complete elliptic integral of the first kind and the Jacobi elliptic function cn. Then we obtain other approximate expressions for these solutions, which are expressed in terms of elementary functions. To do this, the relationship between the complete elliptic integral of the first kind and the arithmetic-geometric mean is used and the rational harmonic balance method is applied to obtain the periodic solution of the original nonlinear oscillator.http://dx.doi.org/10.1155/2012/286290
spellingShingle A. Beléndez
M. L. Alvarez
J. Francés
S. Bleda
T. Beléndez
A. Nájera
E. Arribas
Analytical Approximate Solutions for the Cubic-Quintic Duffing Oscillator in Terms of Elementary Functions
Journal of Applied Mathematics
title Analytical Approximate Solutions for the Cubic-Quintic Duffing Oscillator in Terms of Elementary Functions
title_full Analytical Approximate Solutions for the Cubic-Quintic Duffing Oscillator in Terms of Elementary Functions
title_fullStr Analytical Approximate Solutions for the Cubic-Quintic Duffing Oscillator in Terms of Elementary Functions
title_full_unstemmed Analytical Approximate Solutions for the Cubic-Quintic Duffing Oscillator in Terms of Elementary Functions
title_short Analytical Approximate Solutions for the Cubic-Quintic Duffing Oscillator in Terms of Elementary Functions
title_sort analytical approximate solutions for the cubic quintic duffing oscillator in terms of elementary functions
url http://dx.doi.org/10.1155/2012/286290
work_keys_str_mv AT abelendez analyticalapproximatesolutionsforthecubicquinticduffingoscillatorintermsofelementaryfunctions
AT mlalvarez analyticalapproximatesolutionsforthecubicquinticduffingoscillatorintermsofelementaryfunctions
AT jfrances analyticalapproximatesolutionsforthecubicquinticduffingoscillatorintermsofelementaryfunctions
AT sbleda analyticalapproximatesolutionsforthecubicquinticduffingoscillatorintermsofelementaryfunctions
AT tbelendez analyticalapproximatesolutionsforthecubicquinticduffingoscillatorintermsofelementaryfunctions
AT anajera analyticalapproximatesolutionsforthecubicquinticduffingoscillatorintermsofelementaryfunctions
AT earribas analyticalapproximatesolutionsforthecubicquinticduffingoscillatorintermsofelementaryfunctions