Advancements in Plant Pests Detection: Leveraging Convolutional Neural Networks for Smart Agriculture

Insects and illnesses that affect plants can have a major negative effect on both their quality and their yield. Digital image processing may be applied to diagnose plant illnesses and detect plant pests. In the field of digital image processing, recent developments have shown that more conventional...

Full description

Saved in:
Bibliographic Details
Main Authors: Gopalakrishnan Nagaraj, Dakshinamurthy Sungeetha, Mohit Tiwari, Vandana Ahuja, Ajit Kumar Varma, Pankaj Agarwal
Format: Article
Language:English
Published: MDPI AG 2024-01-01
Series:Engineering Proceedings
Subjects:
Online Access:https://www.mdpi.com/2673-4591/59/1/201
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Insects and illnesses that affect plants can have a major negative effect on both their quality and their yield. Digital image processing may be applied to diagnose plant illnesses and detect plant pests. In the field of digital image processing, recent developments have shown that more conventional methods have been eclipsed by deep learning by a wide margin. Now, researchers are concentrating their efforts on the question of how the technique of deep learning may be applied to the issue of identifying plant diseases and pests. In this paper, the difficulties that arise when diagnosing plant pathogens and pests are outlined, and the various diagnostic approaches that are currently in use are evaluated and contrasted. This article presents a summary of three perspectives, each of which is based on a different network design, in recent research on deep learning applied to the detection of plant diseases and pests. We developed a convolutional neural network (CNN)-based framework for identifying pest-borne diseases in tomato leaves using the Plant Village Dataset and the MobileNetV2 architecture. We compared the performance of our proposed MobileNetV2 model with other existing methods and demonstrated its effectiveness in pest detection. Our MobileNetV2 model achieved an impressive accuracy of 93%, outperforming some other models like GoogleNet and VGG16, which were fully trained on the pest dataset in terms of speed.
ISSN:2673-4591