Measuring Component Importance for Network System Using Cellular Automata
This paper concentrates on the component importance measure of a network whose arc failure rates are not deterministic and imprecise ones. Conventionally, a computing method of component importance and a measure method of reliability stability are proposed. Three metrics are analyzed first: Birnbaum...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2019-01-01
|
| Series: | Complexity |
| Online Access: | http://dx.doi.org/10.1155/2019/3971597 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper concentrates on the component importance measure of a network whose arc failure rates are not deterministic and imprecise ones. Conventionally, a computing method of component importance and a measure method of reliability stability are proposed. Three metrics are analyzed first: Birnbaum measurement, component importance, and component risk growth factor. Based on them, the latter can measure the impact of the component importance on the reliability stability of a system. Examples in some typical structures illustrate how to calculate component importance and reliability stability, including uncertain random series, parallel, parallel-series, series-parallel, and bridge systems. The comprehensive numerical experiments demonstrate that both of these methods can efficiently and accurately evaluate the impact of an arc failure on the reliability of a network system. |
|---|---|
| ISSN: | 1076-2787 1099-0526 |