Explainable Machine Learning-Based Prediction Model for Diabetic Nephropathy

The aim of this study is to analyze the effect of serum metabolites on diabetic nephropathy (DN) and predict the prevalence of DN through a machine learning approach. The dataset consists of 548 patients from April 2018 to April 2019 in the Second Affiliated Hospital of Dalian Medical University (SA...

Full description

Saved in:
Bibliographic Details
Main Authors: Jing-Mei Yin, Yang Li, Jun-Tang Xue, Guo-Wei Zong, Zhong-Ze Fang, Lang Zou
Format: Article
Language:English
Published: Wiley 2024-01-01
Series:Journal of Diabetes Research
Online Access:http://dx.doi.org/10.1155/2024/8857453
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aim of this study is to analyze the effect of serum metabolites on diabetic nephropathy (DN) and predict the prevalence of DN through a machine learning approach. The dataset consists of 548 patients from April 2018 to April 2019 in the Second Affiliated Hospital of Dalian Medical University (SAHDMU). We select the optimal 38 features through a least absolute shrinkage and selection operator (LASSO) regression model and a 10-fold cross-validation. We compare four machine learning algorithms, including extreme gradient boosting (XGB), random forest, decision tree, and logistic regression, by AUC-ROC curves, decision curves, and calibration curves. We quantify feature importance and interaction effects in the optimal predictive model by Shapley additive explanation (SHAP) method. The XGB model has the best performance to screen for DN with the highest AUC value of 0.966. The XGB model also gains more clinical net benefits than others, and the fitting degree is better. In addition, there are significant interactions between serum metabolites and duration of diabetes. We develop a predictive model by XGB algorithm to screen for DN. C2, C5DC, Tyr, Ser, Met, C24, C4DC, and Cys have great contribution in the model and can possibly be biomarkers for DN.
ISSN:2314-6753