IAR 2.0: An Algorithm for Refining Inconsistent Annotations for Time-Series Data Using Discriminative Classifiers
The performance of discriminative machine-learning classifiers, such as neural networks, is limited by training label inconsistencies. Even expert-based annotations can suffer from label inconsistencies, especially in the case of ambiguous phenomena-to-annotate. To address this, we propose a novel a...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2025-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10854471/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|