Rheological Behavior, Textural Properties, and Antioxidant Activity of <i>Porphyra yezoensis</i> Polysaccharide

<i>Porphyra yezoensis</i> has attracted much attention due to its gelling properties and bioactivity. In this study, the chemical structure of <i>Porphyra yezoensis</i> polysaccharides (PYPSs) was characterized, and the effects of concentration, temperature, pH, and calcium i...

Full description

Saved in:
Bibliographic Details
Main Authors: Chenyang Ji, Xiaoshan Long, Jingjie Wang, Bo Qi, Yang Cao, Xiao Hu
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/30/4/882
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:<i>Porphyra yezoensis</i> has attracted much attention due to its gelling properties and bioactivity. In this study, the chemical structure of <i>Porphyra yezoensis</i> polysaccharides (PYPSs) was characterized, and the effects of concentration, temperature, pH, and calcium ion (Ca<sup>2+</sup>) addition on the rheological properties of PYPS were systematically investigated. Chemical composition analysis indicated that PYPS primarily contained galactose (89.76%) and sulfate (15.57%). Rheological tests demonstrated that PYPS exhibited typical pseudoplastic properties, with apparent viscosity increasing with an increasing concentration. Temperature elevation from 30 °C to 90 °C weakened the intermolecular forces and reduced the apparent viscosity, whereas neutral pH (7.0) provided an optimal electrostatic equilibrium to maintain the highest viscosity. Ca<sup>2+</sup> could modulate the interactions between PYPS molecules and affect the formation of the gel network structure. When the Ca<sup>2+</sup> concentration reached the optimal value of 6 mM, the calcium bridges formed between Ca<sup>2+</sup> and PYPS molecules not only enhanced the rheological behavior and textural properties but also formed a smooth and well-ordered network structure, achieving the highest value of fractal dimension (D<sub>f</sub> = 2.9600), though excessive Ca<sup>2+</sup> disrupted this well-ordered structure. Furthermore, PYPS possessed significant scavenging ability against DPPH, ABTS, and HO• radicals, demonstrating its potential application as a natural antioxidant in functional foods.
ISSN:1420-3049