Molecular Dynamics Study of Bending Deformation of Mo<sub>2</sub>Ti<sub>2</sub>C<sub>3</sub> and Ti<sub>4</sub>C<sub>3</sub> (MXenes) Nanoribbons

We report a computational study of the bending deformation of two-dimensional nanoribbons by classical molecular dynamics methods. Two-dimensional double transition metal carbides, together with monometallic ones, belong to the family of novel nanomaterials, so-called MXenes. Recently, it was report...

Full description

Saved in:
Bibliographic Details
Main Authors: Vadym Borysiuk, Iakov A. Lyashenko, Valentin L. Popov
Format: Article
Language:English
Published: MDPI AG 2024-10-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/29/19/4668
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report a computational study of the bending deformation of two-dimensional nanoribbons by classical molecular dynamics methods. Two-dimensional double transition metal carbides, together with monometallic ones, belong to the family of novel nanomaterials, so-called MXenes. Recently, it was reported that within molecular dynamics simulations, Ti<sub>4</sub>C<sub>3</sub> MXene nanoribbons demonstrated higher resistance to bending deformation than thinner Ti<sub>2</sub>C MXene and other two-dimensional materials, such as graphene and molybdenum disulfide. Here, we apply a similar method to that used in a previous study to investigate the behavior of Mo<sub>2</sub>Ti<sub>2</sub>C<sub>3</sub> nanoribbon under bending deformation, in comparison to the Ti<sub>4</sub>C<sub>3</sub> sample that has a similar structure. Our calculations show that Mo<sub>2</sub>Ti<sub>2</sub>C<sub>3</sub> is characterized by higher bending rigidity at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mrow><msub><mrow><mi>Ti</mi></mrow><mn>2</mn></msub><msub><mrow><mi>Mo</mi></mrow><mn>2</mn></msub><msub><mi mathvariant="normal">C</mi><mn>3</mn></msub></mrow></msub><mo>≈</mo><mn>92.15</mn></mrow></semantics></math></inline-formula> eV than monometallic Ti<sub>4</sub>C<sub>3</sub> nanoribbon at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mrow><msub><mrow><mi>Ti</mi></mrow><mn>4</mn></msub><msub><mi mathvariant="normal">C</mi><mn>3</mn></msub></mrow></msub><mo>≈</mo><mn>72.01</mn></mrow></semantics></math></inline-formula> eV, which has a similar thickness. Moreover, approximately the same magnitude of critical central deflection of the nanoribbon before fracture was observed for both Mo<sub>2</sub>Ti<sub>2</sub>C<sub>3</sub> and Ti<sub>4</sub>C<sub>3</sub> samples, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>w</mi><mi>c</mi></msub><mo>≈</mo><mn>1.7</mn></mrow></semantics></math></inline-formula> nm, while Mo<sub>2</sub>Ti<sub>2</sub>C<sub>3</sub> MXene is characterized by almost two times higher critical value of related external force.
ISSN:1420-3049