The Convergence of Riemann Solutions to the Modified Chaplygin Gas Equations with a Coulomb-Like Friction Term as the Pressure Vanishes
This paper studies the convergence of Riemann solutions to the inhomogeneous modified Chaplygin gas equations as the pressure vanishes. The delta shock waves and vacuum states occur as the pressure vanishes. The Riemann solutions of inhomogeneous modified Chaplygin gas equations are no longer self-s...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2018-01-01
|
Series: | Advances in Mathematical Physics |
Online Access: | http://dx.doi.org/10.1155/2018/3174719 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper studies the convergence of Riemann solutions to the inhomogeneous modified Chaplygin gas equations as the pressure vanishes. The delta shock waves and vacuum states occur as the pressure vanishes. The Riemann solutions of inhomogeneous modified Chaplygin gas equations are no longer self-similar. It is obviously different from the Riemann solutions of homogeneous modified Chaplygin gas equations. When the pressure vanishes, the Riemann solutions of the modified Chaplygin gas equations with a coulomb-like friction term converge to the Riemann solutions of the pressureless Euler system with a source term. |
---|---|
ISSN: | 1687-9120 1687-9139 |