Quantification of regional net CO<sub>2</sub> flux errors in the Orbiting Carbon Observatory-2 (OCO-2) v10 model intercomparison project (MIP) ensemble using airborne measurements

<p>Inverse model intercomparison projects (MIPs) provide a chance to assess the uncertainties in inversion estimates arising from various sources. However, accurately quantifying ensemble CO<span class="inline-formula"><sub>2</sub></span> flux errors remains c...

Full description

Saved in:
Bibliographic Details
Main Authors: J. Yun, J. Liu, B. Byrne, B. Weir, L. E. Ott, K. McKain, B. C. Baier, L. V. Gatti, S. C. Biraud
Format: Article
Language:English
Published: Copernicus Publications 2025-02-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/25/1725/2025/acp-25-1725-2025.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832086530974285824
author J. Yun
J. Liu
J. Liu
B. Byrne
B. Weir
B. Weir
L. E. Ott
K. McKain
B. C. Baier
L. V. Gatti
S. C. Biraud
author_facet J. Yun
J. Liu
J. Liu
B. Byrne
B. Weir
B. Weir
L. E. Ott
K. McKain
B. C. Baier
L. V. Gatti
S. C. Biraud
author_sort J. Yun
collection DOAJ
description <p>Inverse model intercomparison projects (MIPs) provide a chance to assess the uncertainties in inversion estimates arising from various sources. However, accurately quantifying ensemble CO<span class="inline-formula"><sub>2</sub></span> flux errors remains challenging and often relies on the ensemble spread. This study proposes a method for quantifying the errors in regional net surface–atmosphere CO<span class="inline-formula"><sub>2</sub></span> flux estimates from models taken from the Orbiting Carbon Observatory-2 (OCO-2) v10 MIP by using independent airborne CO<span class="inline-formula"><sub>2</sub></span> measurements for the period 2015–2017. We first calculate the root mean square error (RMSE) between the ensemble mean of posterior CO<span class="inline-formula"><sub>2</sub></span> concentrations and airborne observations and then isolate the CO<span class="inline-formula"><sub>2</sub></span> concentration errors caused solely by the ensemble mean of posterior net fluxes by subtracting the observation, representation, and transport errors from seven regions. Our analysis reveals that the flux errors projected onto CO<span class="inline-formula"><sub>2</sub></span> space account for 55 %–85 % of the regional average RMSE over the 3 years, ranging from 0.88 to 1.91 ppm. In five regions, the error estimates based on observations exceed those computed from the ensemble spread of posterior fluxes by a factor of 1.33–1.93, implying an underestimation of the actual flux errors, while their magnitudes are comparable in two regions. The adjoint sensitivity analysis identifies that the underestimation of flux errors is prominent where the magnitudes of fossil fuel emissions exceed those of terrestrial-biosphere fluxes by a factor of 3–31 over the 3 years. This suggests the presence of systematic biases in the inversion estimates associated with errors in the prescribed fossil fuel emissions common to all models. Our study emphasizes the value of airborne measurements for quantifying regional errors in ensemble net CO<span class="inline-formula"><sub>2</sub></span> flux estimates.</p>
format Article
id doaj-art-b1ba8ec4582648c4bc9d825b7d6b9177
institution Kabale University
issn 1680-7316
1680-7324
language English
publishDate 2025-02-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj-art-b1ba8ec4582648c4bc9d825b7d6b91772025-02-06T14:38:12ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242025-02-01251725174810.5194/acp-25-1725-2025Quantification of regional net CO<sub>2</sub> flux errors in the Orbiting Carbon Observatory-2 (OCO-2) v10 model intercomparison project (MIP) ensemble using airborne measurementsJ. Yun0J. Liu1J. Liu2B. Byrne3B. Weir4B. Weir5L. E. Ott6K. McKain7B. C. Baier8L. V. Gatti9S. C. Biraud10Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USADivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USANASA Goddard Space Flight Center, Greenbelt, Maryland, USAGoddard Earth Sciences Technology and Research II, Morgan State University, Baltimore, Maryland, USANASA Goddard Space Flight Center, Greenbelt, Maryland, USANOAA Global Monitoring Laboratory, Boulder, Colorado, USANOAA Global Monitoring Laboratory, Boulder, Colorado, USAGeneral Coordination of Earth Science (CGCT), National Institute for Space Research (INPE), São José dos Campos, BrazilLawrence Berkeley National Laboratory, Berkeley, California, USA<p>Inverse model intercomparison projects (MIPs) provide a chance to assess the uncertainties in inversion estimates arising from various sources. However, accurately quantifying ensemble CO<span class="inline-formula"><sub>2</sub></span> flux errors remains challenging and often relies on the ensemble spread. This study proposes a method for quantifying the errors in regional net surface–atmosphere CO<span class="inline-formula"><sub>2</sub></span> flux estimates from models taken from the Orbiting Carbon Observatory-2 (OCO-2) v10 MIP by using independent airborne CO<span class="inline-formula"><sub>2</sub></span> measurements for the period 2015–2017. We first calculate the root mean square error (RMSE) between the ensemble mean of posterior CO<span class="inline-formula"><sub>2</sub></span> concentrations and airborne observations and then isolate the CO<span class="inline-formula"><sub>2</sub></span> concentration errors caused solely by the ensemble mean of posterior net fluxes by subtracting the observation, representation, and transport errors from seven regions. Our analysis reveals that the flux errors projected onto CO<span class="inline-formula"><sub>2</sub></span> space account for 55 %–85 % of the regional average RMSE over the 3 years, ranging from 0.88 to 1.91 ppm. In five regions, the error estimates based on observations exceed those computed from the ensemble spread of posterior fluxes by a factor of 1.33–1.93, implying an underestimation of the actual flux errors, while their magnitudes are comparable in two regions. The adjoint sensitivity analysis identifies that the underestimation of flux errors is prominent where the magnitudes of fossil fuel emissions exceed those of terrestrial-biosphere fluxes by a factor of 3–31 over the 3 years. This suggests the presence of systematic biases in the inversion estimates associated with errors in the prescribed fossil fuel emissions common to all models. Our study emphasizes the value of airborne measurements for quantifying regional errors in ensemble net CO<span class="inline-formula"><sub>2</sub></span> flux estimates.</p>https://acp.copernicus.org/articles/25/1725/2025/acp-25-1725-2025.pdf
spellingShingle J. Yun
J. Liu
J. Liu
B. Byrne
B. Weir
B. Weir
L. E. Ott
K. McKain
B. C. Baier
L. V. Gatti
S. C. Biraud
Quantification of regional net CO<sub>2</sub> flux errors in the Orbiting Carbon Observatory-2 (OCO-2) v10 model intercomparison project (MIP) ensemble using airborne measurements
Atmospheric Chemistry and Physics
title Quantification of regional net CO<sub>2</sub> flux errors in the Orbiting Carbon Observatory-2 (OCO-2) v10 model intercomparison project (MIP) ensemble using airborne measurements
title_full Quantification of regional net CO<sub>2</sub> flux errors in the Orbiting Carbon Observatory-2 (OCO-2) v10 model intercomparison project (MIP) ensemble using airborne measurements
title_fullStr Quantification of regional net CO<sub>2</sub> flux errors in the Orbiting Carbon Observatory-2 (OCO-2) v10 model intercomparison project (MIP) ensemble using airborne measurements
title_full_unstemmed Quantification of regional net CO<sub>2</sub> flux errors in the Orbiting Carbon Observatory-2 (OCO-2) v10 model intercomparison project (MIP) ensemble using airborne measurements
title_short Quantification of regional net CO<sub>2</sub> flux errors in the Orbiting Carbon Observatory-2 (OCO-2) v10 model intercomparison project (MIP) ensemble using airborne measurements
title_sort quantification of regional net co sub 2 sub flux errors in the orbiting carbon observatory 2 oco 2 v10 model intercomparison project mip ensemble using airborne measurements
url https://acp.copernicus.org/articles/25/1725/2025/acp-25-1725-2025.pdf
work_keys_str_mv AT jyun quantificationofregionalnetcosub2subfluxerrorsintheorbitingcarbonobservatory2oco2v10modelintercomparisonprojectmipensembleusingairbornemeasurements
AT jliu quantificationofregionalnetcosub2subfluxerrorsintheorbitingcarbonobservatory2oco2v10modelintercomparisonprojectmipensembleusingairbornemeasurements
AT jliu quantificationofregionalnetcosub2subfluxerrorsintheorbitingcarbonobservatory2oco2v10modelintercomparisonprojectmipensembleusingairbornemeasurements
AT bbyrne quantificationofregionalnetcosub2subfluxerrorsintheorbitingcarbonobservatory2oco2v10modelintercomparisonprojectmipensembleusingairbornemeasurements
AT bweir quantificationofregionalnetcosub2subfluxerrorsintheorbitingcarbonobservatory2oco2v10modelintercomparisonprojectmipensembleusingairbornemeasurements
AT bweir quantificationofregionalnetcosub2subfluxerrorsintheorbitingcarbonobservatory2oco2v10modelintercomparisonprojectmipensembleusingairbornemeasurements
AT leott quantificationofregionalnetcosub2subfluxerrorsintheorbitingcarbonobservatory2oco2v10modelintercomparisonprojectmipensembleusingairbornemeasurements
AT kmckain quantificationofregionalnetcosub2subfluxerrorsintheorbitingcarbonobservatory2oco2v10modelintercomparisonprojectmipensembleusingairbornemeasurements
AT bcbaier quantificationofregionalnetcosub2subfluxerrorsintheorbitingcarbonobservatory2oco2v10modelintercomparisonprojectmipensembleusingairbornemeasurements
AT lvgatti quantificationofregionalnetcosub2subfluxerrorsintheorbitingcarbonobservatory2oco2v10modelintercomparisonprojectmipensembleusingairbornemeasurements
AT scbiraud quantificationofregionalnetcosub2subfluxerrorsintheorbitingcarbonobservatory2oco2v10modelintercomparisonprojectmipensembleusingairbornemeasurements