A Multitask Multiview Neural Network for End-to-End Aspect-Based Sentiment Analysis

The aspect-based sentiment analysis (ABSA) consists of two subtasks'aspect term extraction and aspect sentiment prediction. Existing methods deal with both subtasks one by one in a pipeline manner, in which there lies some problems in performance and real application. This study investigates th...

Full description

Saved in:
Bibliographic Details
Main Authors: Yong Bie, Yan Yang
Format: Article
Language:English
Published: Tsinghua University Press 2021-09-01
Series:Big Data Mining and Analytics
Subjects:
Online Access:https://www.sciopen.com/article/10.26599/BDMA.2021.9020003
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aspect-based sentiment analysis (ABSA) consists of two subtasks'aspect term extraction and aspect sentiment prediction. Existing methods deal with both subtasks one by one in a pipeline manner, in which there lies some problems in performance and real application. This study investigates the end-to-end ABSA and proposes a novel multitask multiview network (MTMVN) architecture. Specifically, the architecture takes the unified ABSA as the main task with the two subtasks as auxiliary tasks. Meanwhile, the representation obtained from the branch network of the main task is regarded as the global view, whereas the representations of the two subtasks are considered two local views with different emphases. Through multitask learning, the main task can be facilitated by additional accurate aspect boundary information and sentiment polarity information. By enhancing the correlations between the views under the idea of multiview learning, the representation of the global view can be optimized to improve the overall performance of the model. The experimental results on three benchmark datasets show that the proposed method exceeds the existing pipeline methods and end-to-end methods, proving the superiority of our MTMVN architecture.
ISSN:2096-0654