Fermions Tunneling and Quantum Corrections for Quintessential Kerr-Newman-AdS Black Hole
This paper is devoted to study charged fermion particles tunneling through the horizon of Kerr-Newman-AdS black hole surrounded by quintessence by using Hamilton-Jacobi ansatz. In our analysis, we investigate Hawking temperature as well as quantum corrected Hawking temperature on account of generali...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2019-01-01
|
Series: | Advances in High Energy Physics |
Online Access: | http://dx.doi.org/10.1155/2019/2759641 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper is devoted to study charged fermion particles tunneling through the horizon of Kerr-Newman-AdS black hole surrounded by quintessence by using Hamilton-Jacobi ansatz. In our analysis, we investigate Hawking temperature as well as quantum corrected Hawking temperature on account of generalized uncertainty principle. Moreover, we discuss the effects of correction parameter β on the corrected Hawking temperature Te-H, graphically. We conclude that the temperature Te-H vanishes when β=100, whereas for β<100 and β>100, the temperature turns out to be positive and negative, respectively. We observe that the graphs of Te-H w.r.t. quintessence parameter α exhibit behavior only for the particular ranges, i.e., 0<α<1/6, charge 0<Q≤1, and rotation parameter 0<a≤1. For smaller and larger values of negative Λ, as horizon increases, the temperature decreases and increases, respectively. |
---|---|
ISSN: | 1687-7357 1687-7365 |