The Water Table Model (WTM) (v2.0.1): coupled groundwater and dynamic lake modelling

<p>Ice-free land comprises 26 % of the Earth's surface and holds liquid water that delineates ecosystems, affects global geochemical cycling, and modulates sea levels. However, we currently lack the capacity to simulate and predict these terrestrial water changes across the full range of...

Full description

Saved in:
Bibliographic Details
Main Authors: K. L. Callaghan, A. D. Wickert, R. Barnes, J. Austermann
Format: Article
Language:English
Published: Copernicus Publications 2025-03-01
Series:Geoscientific Model Development
Online Access:https://gmd.copernicus.org/articles/18/1463/2025/gmd-18-1463-2025.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:<p>Ice-free land comprises 26 % of the Earth's surface and holds liquid water that delineates ecosystems, affects global geochemical cycling, and modulates sea levels. However, we currently lack the capacity to simulate and predict these terrestrial water changes across the full range of relevant spatial (watershed to global) and temporal (monthly to millennial) scales. To address this knowledge gap, we present the Water Table Model (WTM), which integrates coupled components to compute dynamic lake and groundwater levels. The groundwater component solves the 2D horizontal groundwater flow equation using non-linear equation solvers from the C++ PETSc (Portable, Extensible Toolkit for Scientific Computation) library. The dynamic lake component makes use of the Fill–Spill–Merge (FSM) algorithm to move surface water into lakes, where it may evaporate or affect groundwater flow. In a proof-of-concept application, we demonstrate the continental-scale capabilities of the WTM by simulating the steady-state climate-driven water table for the present day and the Last Glacial Maximum (LGM; 21 000 calendar years before present) across the North American continent. During the LGM, North America stored an additional 14.98 cm of sea-level equivalent (SLE) in lakes and groundwater compared to the climate-driven present-day scenario. We compare the present-day result to other simulations and real-world data. Open-source code for the WTM is available on GitHub and Zenodo.</p>
ISSN:1991-959X
1991-9603