A New Deep Learning-Based Method for Automated Identification of Thoracic Lymph Node Stations in Endobronchial Ultrasound (EBUS): A Proof-of-Concept Study
Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is a cornerstone in minimally invasive thoracic lymph node sampling. In lung cancer staging, precise assessment of lymph node position is crucial for clinical decision-making. This study aimed to demonstrate a new deep lear...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-01-01
|
Series: | Journal of Imaging |
Subjects: | |
Online Access: | https://www.mdpi.com/2313-433X/11/1/10 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is a cornerstone in minimally invasive thoracic lymph node sampling. In lung cancer staging, precise assessment of lymph node position is crucial for clinical decision-making. This study aimed to demonstrate a new deep learning method to classify thoracic lymph nodes based on their anatomical location using EBUS images. Bronchoscopists labeled lymph node stations in real-time according to the Mountain Dressler nomenclature. EBUS images were then used to train and test a deep neural network (DNN) model, with intraoperative labels as ground truth. In total, 28,134 EBUS images were acquired from 56 patients. The model achieved an overall classification accuracy of 59.5 ± 5.2%. The highest precision, sensitivity, and F1 score were observed in station 4L, 77.6 ± 13.1%, 77.6 ± 15.4%, and 77.6 ± 15.4%, respectively. The lowest precision, sensitivity, and F1 score were observed in station 10L. The average processing and prediction time for a sequence of ten images was 0.65 ± 0.04 s, demonstrating the feasibility of real-time applications. In conclusion, the new DNN-based model could be used to classify lymph node stations from EBUS images. The method performance was promising with a potential for clinical use. |
---|---|
ISSN: | 2313-433X |