Solovay–Kitaev Approximations of Special Orthogonal Matrices
The circuit-gate framework of quantum computing relies on the fact that an arbitrary quantum gate in the form of a unitary matrix of unit determinant can be approximated to a desired accuracy by a fairly short sequence of basic gates, of which the exact bounds are provided by the Solovay–Kitaev theo...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Advances in Mathematical Physics |
Online Access: | http://dx.doi.org/10.1155/2020/2530609 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The circuit-gate framework of quantum computing relies on the fact that an arbitrary quantum gate in the form of a unitary matrix of unit determinant can be approximated to a desired accuracy by a fairly short sequence of basic gates, of which the exact bounds are provided by the Solovay–Kitaev theorem. In this work, we show that a version of this theorem is applicable to orthogonal matrices with unit determinant as well, indicating the possibility of using orthogonal matrices for efficient computation. We further develop a version of the Solovay–Kitaev algorithm and discuss the computational experience. |
---|---|
ISSN: | 1687-9120 1687-9139 |