Subchronic Exposure to Low-Dose Chlorfenapyr and Emamectin Benzoate Disrupts Kidney Metabolism in Rats

Residues of the pesticides chlorfenapyr (CFP) and emamectin benzoate (EMB) often coexist in the environment and can be accumulated in the body. To understand the impact of these two chemicals on health, we investigated their effect on the kidneys. In this study, rats were treated with CFP and/or EMB...

Full description

Saved in:
Bibliographic Details
Main Authors: Di Zhang, Xiao-Hua Song, Dan Yang, Mu-Zi Ge, Jun Qiu, Han-Qing Jiang, Yan-Yan Sun, Xiang-dong Li, Yi-Jun Wu
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Toxics
Subjects:
Online Access:https://www.mdpi.com/2305-6304/13/1/65
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Residues of the pesticides chlorfenapyr (CFP) and emamectin benzoate (EMB) often coexist in the environment and can be accumulated in the body. To understand the impact of these two chemicals on health, we investigated their effect on the kidneys. In this study, rats were treated with CFP and/or EMB at low/medium/high doses of 1/3/9 mg/kg/day and 0.2/0.6/1.8 mg/kg/day, respectively, via oral gavage for 60 days. Kidneys and serum samples were collected and serum biochemistry and kidney histopathological changes were analyzed and examined. Kidney metabolome alterations were analyzed by using gas chromatography–mass spectrometry. The results showed that combined exposure to CFP and EMB elevated BUN levels and induced pathological damage, which presented as thinner renal tubular epithelial cells, an abnormal glomerular morphology, and an increased fibrotic area. CFP and/or EMB disrupted glutathione metabolism and carbohydrate metabolism, resulting in the alteration of kidney metabolomes and inducing oxidative stress in the cells of kidney tissues. In addition, CFP decreased ATP content and inhibited pyruvate PDH activity in the kidneys. These findings suggest that long-term exposure to CFP and EMB at environmentally relevant levels induce alterations in the renal metabolome, oxidative stress, and an insufficient energy supply, which may contribute to renal histopathological damage.
ISSN:2305-6304