Timelike W-Surfaces in Minkowski 3-Space ℝ13 and the Sinh-Gordon Equation

Let M and M∗ be two timelike surfaces in Minkowski 3-space ℝ13. If there exists a spacelike (timelike) Darboux line congruence between each point of M and M∗, then the surfaces are timelike Weingarten surfaces. It turns out their Tschebyscheff angles are solutions of the Sinh-Gordon equation, and th...

Full description

Saved in:
Bibliographic Details
Main Authors: Nadia Alluhaibi, Rashad A. Abdel-Baky
Format: Article
Language:English
Published: Wiley 2022-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2022/7998748
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832563936074924032
author Nadia Alluhaibi
Rashad A. Abdel-Baky
author_facet Nadia Alluhaibi
Rashad A. Abdel-Baky
author_sort Nadia Alluhaibi
collection DOAJ
description Let M and M∗ be two timelike surfaces in Minkowski 3-space ℝ13. If there exists a spacelike (timelike) Darboux line congruence between each point of M and M∗, then the surfaces are timelike Weingarten surfaces. It turns out their Tschebyscheff angles are solutions of the Sinh-Gordon equation, and the surfaces are related to each other by Backlund’s transformation. Finally, a method to construct new timelike Weingarten surface has been found.
format Article
id doaj-art-b0842181690144969c81b6ce1a321aaa
institution Kabale University
issn 1687-0042
language English
publishDate 2022-01-01
publisher Wiley
record_format Article
series Journal of Applied Mathematics
spelling doaj-art-b0842181690144969c81b6ce1a321aaa2025-02-03T01:12:13ZengWileyJournal of Applied Mathematics1687-00422022-01-01202210.1155/2022/7998748Timelike W-Surfaces in Minkowski 3-Space ℝ13 and the Sinh-Gordon EquationNadia Alluhaibi0Rashad A. Abdel-Baky1Department of MathematicsDepartment of MathematicsLet M and M∗ be two timelike surfaces in Minkowski 3-space ℝ13. If there exists a spacelike (timelike) Darboux line congruence between each point of M and M∗, then the surfaces are timelike Weingarten surfaces. It turns out their Tschebyscheff angles are solutions of the Sinh-Gordon equation, and the surfaces are related to each other by Backlund’s transformation. Finally, a method to construct new timelike Weingarten surface has been found.http://dx.doi.org/10.1155/2022/7998748
spellingShingle Nadia Alluhaibi
Rashad A. Abdel-Baky
Timelike W-Surfaces in Minkowski 3-Space ℝ13 and the Sinh-Gordon Equation
Journal of Applied Mathematics
title Timelike W-Surfaces in Minkowski 3-Space ℝ13 and the Sinh-Gordon Equation
title_full Timelike W-Surfaces in Minkowski 3-Space ℝ13 and the Sinh-Gordon Equation
title_fullStr Timelike W-Surfaces in Minkowski 3-Space ℝ13 and the Sinh-Gordon Equation
title_full_unstemmed Timelike W-Surfaces in Minkowski 3-Space ℝ13 and the Sinh-Gordon Equation
title_short Timelike W-Surfaces in Minkowski 3-Space ℝ13 and the Sinh-Gordon Equation
title_sort timelike w surfaces in minkowski 3 space r13 and the sinh gordon equation
url http://dx.doi.org/10.1155/2022/7998748
work_keys_str_mv AT nadiaalluhaibi timelikewsurfacesinminkowski3spacer13andthesinhgordonequation
AT rashadaabdelbaky timelikewsurfacesinminkowski3spacer13andthesinhgordonequation