a*-families of analytic functions
Using convolutions, a new family of analytic functions is introduced. This family, called a*-family, serves in certain situations to unify the study of many previously well known classes of analytic functions like multivalent convex, starlike, close-to-convex or prestarlike functions, functions star...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
1984-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S0161171284000478 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Using convolutions, a new family of analytic functions is introduced. This family, called a*-family, serves in certain situations to unify the study of many previously well known classes of analytic functions like multivalent convex, starlike, close-to-convex or prestarlike functions, functions starlike with respect to symmetric points and other such classes related to the class of univalent or multivalent functions. A necessary and sufficient condition on the Taylor series coefficients so that an analytic function with negative coefficients is in an a*-family is obtained and sharp coefficents bound for functions in such a family is deduced. The extreme points of an a*-family of functions with negative coefficients are completely determined. Finally, it is shown that Zmorvic conjecture is true if the concerned families consist of functions with negative coefficients. |
---|---|
ISSN: | 0161-1712 1687-0425 |