Convergence of the solutions for the equation x(iv)+ax ⃛+bx¨+g(x˙)+h(x)=p(t,x,x˙,x¨,x ⃛)

This paper is concerned with differential equations of the formx(iv)+ax ⃛+bx¨+g(x˙)+h(x)=p(t,x,x˙,x¨,x ⃛)where a, b are positive constants and the functions g, h and p are continuous in their respective arguments, with the function h not necessarily differentiable. By introducing a Lyapunov function...

Full description

Saved in:
Bibliographic Details
Main Author: Anthony Uyi Afuwape
Format: Article
Language:English
Published: Wiley 1988-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171288000882
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper is concerned with differential equations of the formx(iv)+ax ⃛+bx¨+g(x˙)+h(x)=p(t,x,x˙,x¨,x ⃛)where a, b are positive constants and the functions g, h and p are continuous in their respective arguments, with the function h not necessarily differentiable. By introducing a Lyapunov function, as well as restricting the incrementary ratio η−1{h(ζ+η)−h(ζ)}, (η≠0), of h to a closed sub-interval of the Routh-Hurwitz interval, we prove the convergence of solutions for this equation. This generalizes earlier results.
ISSN:0161-1712
1687-0425