Large-Scale Rice Mutant Establishment and High-Throughput Mutant Manipulation Help Advance Rice Functional Genomics

Rice (<i>Oryza sativa</i> L.) is a stable food for over half of the world population, contributing 50–80% of the daily calorie intake. The completion of rice genome sequencing marks a significant milestone in understanding functional genomics, yet the systematic identification of gene fu...

Full description

Saved in:
Bibliographic Details
Main Authors: Eyob Kassaye Wolella, Zhen Cheng, Mengyuan Li, Dandan Xia, Jianwei Zhang, Liu Duan, Li Liu, Zhiyong Li, Jian Zhang
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Plants
Subjects:
Online Access:https://www.mdpi.com/2223-7747/14/10/1492
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rice (<i>Oryza sativa</i> L.) is a stable food for over half of the world population, contributing 50–80% of the daily calorie intake. The completion of rice genome sequencing marks a significant milestone in understanding functional genomics, yet the systematic identification of gene functions remains a bottleneck for rice improvement. Large-scale mutant libraries in which the functions of genes are lost or gained (e.g., through chemical/physical treatments, T-DNA, transposons, RNAi, CRISPR/Cas9) have proven to be powerful tools for the systematic linking of genotypes to phenotypes. So far, using different mutagenesis approaches, a million mutant lines have been established and about 5–10% of the predicted rice gene functions have been identified due to the high demands of labor and low-throughput utilization. DNA-barcoding-based large-scale mutagenesis offers unprecedented precision and scalability in functional genomics. This review summarizes large-scale loss-of-function and gain-of-function mutant library development approaches and emphasizes the integration of DNA barcoding for pooled analysis. Unique DNA barcodes can be tagged to transposons/retrotransposons, DNA constructs, miRNA/siRNA, gRNA, and cDNA, allowing for pooling analysis and the assignment of functions to genes that cause phenotype alterations. In addition, the integration of high-throughput phenotyping and OMICS technologies can accelerate the identification of gene functions.
ISSN:2223-7747