TinyML-enabled fuzzy logic for enhanced road anomaly detection in remote sensing
Abstract Advanced techniques for detecting and classifying road anomalies are crucial due to road networks’ rapid expansion and increasing complexity. This study introduces a novel integration of Tiny Machine Learning (TinyML), remote sensing, and fuzzy logic through a fully connected U-Net architec...
Saved in:
| Main Authors: | Amna Khatoon, Weixing Wang, Mengfei Wang, Limin Li, Asad Ullah |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-07-01
|
| Series: | Scientific Reports |
| Subjects: | |
| Online Access: | https://doi.org/10.1038/s41598-025-01981-5 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Optimising TinyML with quantization and distillation of transformer and mamba models for indoor localisation on edge devices
by: Thanaphon Suwannaphong, et al.
Published: (2025-03-01) -
Empowering Healthcare: TinyML for Precise Lung Disease Classification
by: Youssef Abadade, et al.
Published: (2024-10-01) -
Efficient Detection of Microplastics on Edge Devices With Tailored Compiler for TinyML Applications
by: Alessandro Cerioli, et al.
Published: (2025-01-01) -
TinyML with Meta-Learning on Microcontrollers for Air Pollution Prediction
by: I Nyoman Kusuma Wardana, et al.
Published: (2024-04-01) -
Empowering voice assistants with TinyML for user-centric innovations and real-world applications
by: Sireesha Chittepu, et al.
Published: (2025-05-01)