Nonlinearities Distribution Homotopy Perturbation Method Applied to Solve Nonlinear Problems: Thomas-Fermi Equation as a Case Study

We propose an approximate solution of T-F equation, obtained by using the nonlinearities distribution homotopy perturbation method (NDHPM). Besides, we show a table of comparison, between this proposed approximate solution and a numerical of T-F, by establishing the accuracy of the results.

Saved in:
Bibliographic Details
Main Authors: U. Filobello-Nino, H. Vazquez-Leal, K. Boubaker, A. Sarmiento-Reyes, A. Perez-Sesma, A. Diaz-Sanchez, V. M. Jimenez-Fernandez, J. Cervantes-Perez, J. Sanchez-Orea, J. Huerta-Chua, L. J. Morales-Mendoza, M. Gonzalez-Lee, C. Hernandez-Mejia, F. J. Gonzalez-Martinez
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2015/405108
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832550235391393792
author U. Filobello-Nino
H. Vazquez-Leal
K. Boubaker
A. Sarmiento-Reyes
A. Perez-Sesma
A. Diaz-Sanchez
V. M. Jimenez-Fernandez
J. Cervantes-Perez
J. Sanchez-Orea
J. Huerta-Chua
L. J. Morales-Mendoza
M. Gonzalez-Lee
C. Hernandez-Mejia
F. J. Gonzalez-Martinez
author_facet U. Filobello-Nino
H. Vazquez-Leal
K. Boubaker
A. Sarmiento-Reyes
A. Perez-Sesma
A. Diaz-Sanchez
V. M. Jimenez-Fernandez
J. Cervantes-Perez
J. Sanchez-Orea
J. Huerta-Chua
L. J. Morales-Mendoza
M. Gonzalez-Lee
C. Hernandez-Mejia
F. J. Gonzalez-Martinez
author_sort U. Filobello-Nino
collection DOAJ
description We propose an approximate solution of T-F equation, obtained by using the nonlinearities distribution homotopy perturbation method (NDHPM). Besides, we show a table of comparison, between this proposed approximate solution and a numerical of T-F, by establishing the accuracy of the results.
format Article
id doaj-art-af9b3fa888834f788a852b70e6b3e83c
institution Kabale University
issn 1110-757X
1687-0042
language English
publishDate 2015-01-01
publisher Wiley
record_format Article
series Journal of Applied Mathematics
spelling doaj-art-af9b3fa888834f788a852b70e6b3e83c2025-02-03T06:07:27ZengWileyJournal of Applied Mathematics1110-757X1687-00422015-01-01201510.1155/2015/405108405108Nonlinearities Distribution Homotopy Perturbation Method Applied to Solve Nonlinear Problems: Thomas-Fermi Equation as a Case StudyU. Filobello-Nino0H. Vazquez-Leal1K. Boubaker2A. Sarmiento-Reyes3A. Perez-Sesma4A. Diaz-Sanchez5V. M. Jimenez-Fernandez6J. Cervantes-Perez7J. Sanchez-Orea8J. Huerta-Chua9L. J. Morales-Mendoza10M. Gonzalez-Lee11C. Hernandez-Mejia12F. J. Gonzalez-Martinez13Electronic Instrumentation and Atmospheric Sciences School, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N, 91000 Xalapa, VER, MexicoElectronic Instrumentation and Atmospheric Sciences School, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N, 91000 Xalapa, VER, MexicoEquipe de Physique des Dispositifs à Semiconducteurs, Faculté des Sciences de Tunis, Tunis El Manar University, 2092 Tunis, TunisiaNational Institute for Astrophysics, Optics and Electronics, Luis Enrique Erro No. 1, Santa María Tonantzintla, 72840 Puebla, PUE, MexicoElectronic Instrumentation and Atmospheric Sciences School, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N, 91000 Xalapa, VER, MexicoNational Institute for Astrophysics, Optics and Electronics, Luis Enrique Erro No. 1, Santa María Tonantzintla, 72840 Puebla, PUE, MexicoElectronic Instrumentation and Atmospheric Sciences School, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N, 91000 Xalapa, VER, MexicoElectronic Instrumentation and Atmospheric Sciences School, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N, 91000 Xalapa, VER, MexicoElectronic Instrumentation and Atmospheric Sciences School, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N, 91000 Xalapa, VER, MexicoCivil Engineering School, Universidad Veracruzana, Venustiano Carranza S/N, Colonia Revolucion, 93390 PozaRica, VER, MexicoDepartment of Electronics Engineering, Universidad Veracruzana, Venustiano Carranza S/N, Colonia Revolucion, 93390 Poza Rica, VER, MexicoDepartment of Electronics Engineering, Universidad Veracruzana, Venustiano Carranza S/N, Colonia Revolucion, 93390 Poza Rica, VER, MexicoNational Institute for Astrophysics, Optics and Electronics, Luis Enrique Erro No. 1, Santa María Tonantzintla, 72840 Puebla, PUE, MexicoElectronic Instrumentation and Atmospheric Sciences School, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N, 91000 Xalapa, VER, MexicoWe propose an approximate solution of T-F equation, obtained by using the nonlinearities distribution homotopy perturbation method (NDHPM). Besides, we show a table of comparison, between this proposed approximate solution and a numerical of T-F, by establishing the accuracy of the results.http://dx.doi.org/10.1155/2015/405108
spellingShingle U. Filobello-Nino
H. Vazquez-Leal
K. Boubaker
A. Sarmiento-Reyes
A. Perez-Sesma
A. Diaz-Sanchez
V. M. Jimenez-Fernandez
J. Cervantes-Perez
J. Sanchez-Orea
J. Huerta-Chua
L. J. Morales-Mendoza
M. Gonzalez-Lee
C. Hernandez-Mejia
F. J. Gonzalez-Martinez
Nonlinearities Distribution Homotopy Perturbation Method Applied to Solve Nonlinear Problems: Thomas-Fermi Equation as a Case Study
Journal of Applied Mathematics
title Nonlinearities Distribution Homotopy Perturbation Method Applied to Solve Nonlinear Problems: Thomas-Fermi Equation as a Case Study
title_full Nonlinearities Distribution Homotopy Perturbation Method Applied to Solve Nonlinear Problems: Thomas-Fermi Equation as a Case Study
title_fullStr Nonlinearities Distribution Homotopy Perturbation Method Applied to Solve Nonlinear Problems: Thomas-Fermi Equation as a Case Study
title_full_unstemmed Nonlinearities Distribution Homotopy Perturbation Method Applied to Solve Nonlinear Problems: Thomas-Fermi Equation as a Case Study
title_short Nonlinearities Distribution Homotopy Perturbation Method Applied to Solve Nonlinear Problems: Thomas-Fermi Equation as a Case Study
title_sort nonlinearities distribution homotopy perturbation method applied to solve nonlinear problems thomas fermi equation as a case study
url http://dx.doi.org/10.1155/2015/405108
work_keys_str_mv AT ufilobellonino nonlinearitiesdistributionhomotopyperturbationmethodappliedtosolvenonlinearproblemsthomasfermiequationasacasestudy
AT hvazquezleal nonlinearitiesdistributionhomotopyperturbationmethodappliedtosolvenonlinearproblemsthomasfermiequationasacasestudy
AT kboubaker nonlinearitiesdistributionhomotopyperturbationmethodappliedtosolvenonlinearproblemsthomasfermiequationasacasestudy
AT asarmientoreyes nonlinearitiesdistributionhomotopyperturbationmethodappliedtosolvenonlinearproblemsthomasfermiequationasacasestudy
AT aperezsesma nonlinearitiesdistributionhomotopyperturbationmethodappliedtosolvenonlinearproblemsthomasfermiequationasacasestudy
AT adiazsanchez nonlinearitiesdistributionhomotopyperturbationmethodappliedtosolvenonlinearproblemsthomasfermiequationasacasestudy
AT vmjimenezfernandez nonlinearitiesdistributionhomotopyperturbationmethodappliedtosolvenonlinearproblemsthomasfermiequationasacasestudy
AT jcervantesperez nonlinearitiesdistributionhomotopyperturbationmethodappliedtosolvenonlinearproblemsthomasfermiequationasacasestudy
AT jsanchezorea nonlinearitiesdistributionhomotopyperturbationmethodappliedtosolvenonlinearproblemsthomasfermiequationasacasestudy
AT jhuertachua nonlinearitiesdistributionhomotopyperturbationmethodappliedtosolvenonlinearproblemsthomasfermiequationasacasestudy
AT ljmoralesmendoza nonlinearitiesdistributionhomotopyperturbationmethodappliedtosolvenonlinearproblemsthomasfermiequationasacasestudy
AT mgonzalezlee nonlinearitiesdistributionhomotopyperturbationmethodappliedtosolvenonlinearproblemsthomasfermiequationasacasestudy
AT chernandezmejia nonlinearitiesdistributionhomotopyperturbationmethodappliedtosolvenonlinearproblemsthomasfermiequationasacasestudy
AT fjgonzalezmartinez nonlinearitiesdistributionhomotopyperturbationmethodappliedtosolvenonlinearproblemsthomasfermiequationasacasestudy