Nonlinearities Distribution Homotopy Perturbation Method Applied to Solve Nonlinear Problems: Thomas-Fermi Equation as a Case Study
We propose an approximate solution of T-F equation, obtained by using the nonlinearities distribution homotopy perturbation method (NDHPM). Besides, we show a table of comparison, between this proposed approximate solution and a numerical of T-F, by establishing the accuracy of the results.
Saved in:
Main Authors: | , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2015-01-01
|
Series: | Journal of Applied Mathematics |
Online Access: | http://dx.doi.org/10.1155/2015/405108 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832550235391393792 |
---|---|
author | U. Filobello-Nino H. Vazquez-Leal K. Boubaker A. Sarmiento-Reyes A. Perez-Sesma A. Diaz-Sanchez V. M. Jimenez-Fernandez J. Cervantes-Perez J. Sanchez-Orea J. Huerta-Chua L. J. Morales-Mendoza M. Gonzalez-Lee C. Hernandez-Mejia F. J. Gonzalez-Martinez |
author_facet | U. Filobello-Nino H. Vazquez-Leal K. Boubaker A. Sarmiento-Reyes A. Perez-Sesma A. Diaz-Sanchez V. M. Jimenez-Fernandez J. Cervantes-Perez J. Sanchez-Orea J. Huerta-Chua L. J. Morales-Mendoza M. Gonzalez-Lee C. Hernandez-Mejia F. J. Gonzalez-Martinez |
author_sort | U. Filobello-Nino |
collection | DOAJ |
description | We propose an approximate solution of T-F equation, obtained by using the nonlinearities distribution homotopy perturbation method (NDHPM). Besides, we show a table of comparison, between this proposed approximate solution and a numerical of T-F, by establishing the accuracy of the results. |
format | Article |
id | doaj-art-af9b3fa888834f788a852b70e6b3e83c |
institution | Kabale University |
issn | 1110-757X 1687-0042 |
language | English |
publishDate | 2015-01-01 |
publisher | Wiley |
record_format | Article |
series | Journal of Applied Mathematics |
spelling | doaj-art-af9b3fa888834f788a852b70e6b3e83c2025-02-03T06:07:27ZengWileyJournal of Applied Mathematics1110-757X1687-00422015-01-01201510.1155/2015/405108405108Nonlinearities Distribution Homotopy Perturbation Method Applied to Solve Nonlinear Problems: Thomas-Fermi Equation as a Case StudyU. Filobello-Nino0H. Vazquez-Leal1K. Boubaker2A. Sarmiento-Reyes3A. Perez-Sesma4A. Diaz-Sanchez5V. M. Jimenez-Fernandez6J. Cervantes-Perez7J. Sanchez-Orea8J. Huerta-Chua9L. J. Morales-Mendoza10M. Gonzalez-Lee11C. Hernandez-Mejia12F. J. Gonzalez-Martinez13Electronic Instrumentation and Atmospheric Sciences School, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N, 91000 Xalapa, VER, MexicoElectronic Instrumentation and Atmospheric Sciences School, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N, 91000 Xalapa, VER, MexicoEquipe de Physique des Dispositifs à Semiconducteurs, Faculté des Sciences de Tunis, Tunis El Manar University, 2092 Tunis, TunisiaNational Institute for Astrophysics, Optics and Electronics, Luis Enrique Erro No. 1, Santa María Tonantzintla, 72840 Puebla, PUE, MexicoElectronic Instrumentation and Atmospheric Sciences School, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N, 91000 Xalapa, VER, MexicoNational Institute for Astrophysics, Optics and Electronics, Luis Enrique Erro No. 1, Santa María Tonantzintla, 72840 Puebla, PUE, MexicoElectronic Instrumentation and Atmospheric Sciences School, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N, 91000 Xalapa, VER, MexicoElectronic Instrumentation and Atmospheric Sciences School, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N, 91000 Xalapa, VER, MexicoElectronic Instrumentation and Atmospheric Sciences School, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N, 91000 Xalapa, VER, MexicoCivil Engineering School, Universidad Veracruzana, Venustiano Carranza S/N, Colonia Revolucion, 93390 PozaRica, VER, MexicoDepartment of Electronics Engineering, Universidad Veracruzana, Venustiano Carranza S/N, Colonia Revolucion, 93390 Poza Rica, VER, MexicoDepartment of Electronics Engineering, Universidad Veracruzana, Venustiano Carranza S/N, Colonia Revolucion, 93390 Poza Rica, VER, MexicoNational Institute for Astrophysics, Optics and Electronics, Luis Enrique Erro No. 1, Santa María Tonantzintla, 72840 Puebla, PUE, MexicoElectronic Instrumentation and Atmospheric Sciences School, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N, 91000 Xalapa, VER, MexicoWe propose an approximate solution of T-F equation, obtained by using the nonlinearities distribution homotopy perturbation method (NDHPM). Besides, we show a table of comparison, between this proposed approximate solution and a numerical of T-F, by establishing the accuracy of the results.http://dx.doi.org/10.1155/2015/405108 |
spellingShingle | U. Filobello-Nino H. Vazquez-Leal K. Boubaker A. Sarmiento-Reyes A. Perez-Sesma A. Diaz-Sanchez V. M. Jimenez-Fernandez J. Cervantes-Perez J. Sanchez-Orea J. Huerta-Chua L. J. Morales-Mendoza M. Gonzalez-Lee C. Hernandez-Mejia F. J. Gonzalez-Martinez Nonlinearities Distribution Homotopy Perturbation Method Applied to Solve Nonlinear Problems: Thomas-Fermi Equation as a Case Study Journal of Applied Mathematics |
title | Nonlinearities Distribution Homotopy Perturbation Method Applied to Solve Nonlinear Problems: Thomas-Fermi Equation as a Case Study |
title_full | Nonlinearities Distribution Homotopy Perturbation Method Applied to Solve Nonlinear Problems: Thomas-Fermi Equation as a Case Study |
title_fullStr | Nonlinearities Distribution Homotopy Perturbation Method Applied to Solve Nonlinear Problems: Thomas-Fermi Equation as a Case Study |
title_full_unstemmed | Nonlinearities Distribution Homotopy Perturbation Method Applied to Solve Nonlinear Problems: Thomas-Fermi Equation as a Case Study |
title_short | Nonlinearities Distribution Homotopy Perturbation Method Applied to Solve Nonlinear Problems: Thomas-Fermi Equation as a Case Study |
title_sort | nonlinearities distribution homotopy perturbation method applied to solve nonlinear problems thomas fermi equation as a case study |
url | http://dx.doi.org/10.1155/2015/405108 |
work_keys_str_mv | AT ufilobellonino nonlinearitiesdistributionhomotopyperturbationmethodappliedtosolvenonlinearproblemsthomasfermiequationasacasestudy AT hvazquezleal nonlinearitiesdistributionhomotopyperturbationmethodappliedtosolvenonlinearproblemsthomasfermiequationasacasestudy AT kboubaker nonlinearitiesdistributionhomotopyperturbationmethodappliedtosolvenonlinearproblemsthomasfermiequationasacasestudy AT asarmientoreyes nonlinearitiesdistributionhomotopyperturbationmethodappliedtosolvenonlinearproblemsthomasfermiequationasacasestudy AT aperezsesma nonlinearitiesdistributionhomotopyperturbationmethodappliedtosolvenonlinearproblemsthomasfermiequationasacasestudy AT adiazsanchez nonlinearitiesdistributionhomotopyperturbationmethodappliedtosolvenonlinearproblemsthomasfermiequationasacasestudy AT vmjimenezfernandez nonlinearitiesdistributionhomotopyperturbationmethodappliedtosolvenonlinearproblemsthomasfermiequationasacasestudy AT jcervantesperez nonlinearitiesdistributionhomotopyperturbationmethodappliedtosolvenonlinearproblemsthomasfermiequationasacasestudy AT jsanchezorea nonlinearitiesdistributionhomotopyperturbationmethodappliedtosolvenonlinearproblemsthomasfermiequationasacasestudy AT jhuertachua nonlinearitiesdistributionhomotopyperturbationmethodappliedtosolvenonlinearproblemsthomasfermiequationasacasestudy AT ljmoralesmendoza nonlinearitiesdistributionhomotopyperturbationmethodappliedtosolvenonlinearproblemsthomasfermiequationasacasestudy AT mgonzalezlee nonlinearitiesdistributionhomotopyperturbationmethodappliedtosolvenonlinearproblemsthomasfermiequationasacasestudy AT chernandezmejia nonlinearitiesdistributionhomotopyperturbationmethodappliedtosolvenonlinearproblemsthomasfermiequationasacasestudy AT fjgonzalezmartinez nonlinearitiesdistributionhomotopyperturbationmethodappliedtosolvenonlinearproblemsthomasfermiequationasacasestudy |