Approximation Characteristics of Weighted Sobolev Spaces on Sphere in Different Settings

This article primarily examines the approximation properties of a weighted Sobolev space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>W</mi><mrow><mn>2</mn><mo>...

Full description

Saved in:
Bibliographic Details
Main Authors: Jiayi Qiu, Guanggui Chen, Yanyan Xu, Ying Luo, Hang Ren
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/1/42
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article primarily examines the approximation properties of a weighted Sobolev space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>W</mi><mrow><mn>2</mn><mo>,</mo><mi>κ</mi></mrow><mi>r</mi></msubsup></semantics></math></inline-formula> defined on a sphere <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">S</mi><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> equipped with Gaussian measures. Specifically, this study focuses on both the average case and probabilistic case settings. The exact asymptotic orders of the Gel’fand <i>n</i>-width and the linear <i>n</i>-width of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>W</mi><mrow><mn>2</mn><mo>,</mo><mi>κ</mi></mrow><mi>r</mi></msubsup></semantics></math></inline-formula> on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">S</mi><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> are derived for these settings, providing a comprehensive understanding of their approximation characteristics.
ISSN:2075-1680