Adaptive Fuzzy Synchronization of Fractional-Order Chaotic Neural Networks with Backlash-Like Hysteresis

An adaptive fuzzy synchronization controller is designed for a class of fractional-order neural networks (FONNs) subject to backlash-like hysteresis input. Fuzzy logic systems are used to approximate the system uncertainties as well as the unknown terms of the backlash-like hysteresis. An adaptive f...

Full description

Saved in:
Bibliographic Details
Main Authors: Wenqing Fu, Heng Liu
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Advances in Mathematical Physics
Online Access:http://dx.doi.org/10.1155/2018/7535628
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An adaptive fuzzy synchronization controller is designed for a class of fractional-order neural networks (FONNs) subject to backlash-like hysteresis input. Fuzzy logic systems are used to approximate the system uncertainties as well as the unknown terms of the backlash-like hysteresis. An adaptive fuzzy controller, which can guarantee the synchronization errors tend to an arbitrary small region, is given. The stability of the closed-loop system is rigorously analyzed based on fractional Lyapunov stability criterion. Fractional adaptation laws are established to update the fuzzy parameters. Finally, some simulation examples are provided to indicate the effectiveness and the robust of the proposed control method.
ISSN:1687-9120
1687-9139