The Application of Improved Spherical Harmonics Expansion-Based Multilevel Fast Multipole Algorithm in the Solution of Volume-Surface Integral Equation
During the solution of volume-surface integral equation (VSIE), to reduce the core memory requirement of the radiation patterns (RPs) of the basis functions, an improved spherical harmonics expansion-based multilevel fast multipole algorithm (SE-MLFMA) using the mixed-potential representation and th...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2018-01-01
|
| Series: | International Journal of Antennas and Propagation |
| Online Access: | http://dx.doi.org/10.1155/2018/8267504 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | During the solution of volume-surface integral equation (VSIE), to reduce the core memory requirement of the radiation patterns (RPs) of the basis functions, an improved spherical harmonics expansion-based multilevel fast multipole algorithm (SE-MLFMA) using the mixed-potential representation and the triangle-/tetrahedron-based grouping scheme is applied. Numerical results show that accompanying with a faster speed, the memory requirement of the RPs in the improved SE-MLFMA is several times less than that in the conventional MLFMA without compromising accuracy. A result employing the OpenMP parallelization and vector arithmetic logic unit (VALU) hardware acceleration technique is also shown to illustrate the robustness and scalability of the improved SE-MLFMA method. |
|---|---|
| ISSN: | 1687-5869 1687-5877 |