DANSK: Domain Generalization of Danish Named Entity Recognition
Named entity recognition is an important application within Danish NLP, essential within both industry and research. However, Danish NER is inhibited by a lack coverage across domains and entity types. As a consequence, no current models are capable of fine-grained named entity recognition, nor hav...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Linköping University Electronic Press
2024-12-01
|
Series: | Northern European Journal of Language Technology |
Online Access: | https://nejlt.ep.liu.se/article/view/5249 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832591254043492352 |
---|---|
author | Kenneth Enevoldsen Emil Trenckner Jessen Rebekah Baglini |
author_facet | Kenneth Enevoldsen Emil Trenckner Jessen Rebekah Baglini |
author_sort | Kenneth Enevoldsen |
collection | DOAJ |
description |
Named entity recognition is an important application within Danish NLP, essential within both industry and research. However, Danish NER is inhibited by a lack coverage across domains and entity types. As a consequence, no current models are capable of fine-grained named entity recognition, nor have they been evaluated for potential generalizability issues across datasets and domains. To alleviate these limitations, this paper introduces: 1) DANSK: a named entity dataset providing for high-granularity tagging as well as within-domain evaluation of models across a diverse set of domains; 2) and three generalizable models with fine-grained annotation available in DaCy 2.6.0; and 3) an evaluation of current state-of-the-art models’ ability to generalize across domains. The evaluation of existing and new models revealed notable performance discrepancies across domains, which should be addressed within the field. Shortcomings of the annotation quality of the dataset and its impact on model training and evaluation are also discussed. Despite these limitations, we advocate for the use of the new dataset DANSK alongside further work on
generalizability within Danish NER.
|
format | Article |
id | doaj-art-af139a83ab9d40a194e3a65d926c61bb |
institution | Kabale University |
issn | 2000-1533 |
language | English |
publishDate | 2024-12-01 |
publisher | Linköping University Electronic Press |
record_format | Article |
series | Northern European Journal of Language Technology |
spelling | doaj-art-af139a83ab9d40a194e3a65d926c61bb2025-01-22T15:24:15ZengLinköping University Electronic PressNorthern European Journal of Language Technology2000-15332024-12-0110110.3384/nejlt.2000-1533.2024.5249DANSK: Domain Generalization of Danish Named Entity RecognitionKenneth Enevoldsen0Emil Trenckner Jessen1Rebekah Baglini2Aarhus UniversityAarhus UniversityAarhus University Named entity recognition is an important application within Danish NLP, essential within both industry and research. However, Danish NER is inhibited by a lack coverage across domains and entity types. As a consequence, no current models are capable of fine-grained named entity recognition, nor have they been evaluated for potential generalizability issues across datasets and domains. To alleviate these limitations, this paper introduces: 1) DANSK: a named entity dataset providing for high-granularity tagging as well as within-domain evaluation of models across a diverse set of domains; 2) and three generalizable models with fine-grained annotation available in DaCy 2.6.0; and 3) an evaluation of current state-of-the-art models’ ability to generalize across domains. The evaluation of existing and new models revealed notable performance discrepancies across domains, which should be addressed within the field. Shortcomings of the annotation quality of the dataset and its impact on model training and evaluation are also discussed. Despite these limitations, we advocate for the use of the new dataset DANSK alongside further work on generalizability within Danish NER. https://nejlt.ep.liu.se/article/view/5249 |
spellingShingle | Kenneth Enevoldsen Emil Trenckner Jessen Rebekah Baglini DANSK: Domain Generalization of Danish Named Entity Recognition Northern European Journal of Language Technology |
title | DANSK: Domain Generalization of Danish Named Entity Recognition |
title_full | DANSK: Domain Generalization of Danish Named Entity Recognition |
title_fullStr | DANSK: Domain Generalization of Danish Named Entity Recognition |
title_full_unstemmed | DANSK: Domain Generalization of Danish Named Entity Recognition |
title_short | DANSK: Domain Generalization of Danish Named Entity Recognition |
title_sort | dansk domain generalization of danish named entity recognition |
url | https://nejlt.ep.liu.se/article/view/5249 |
work_keys_str_mv | AT kennethenevoldsen danskdomaingeneralizationofdanishnamedentityrecognition AT emiltrencknerjessen danskdomaingeneralizationofdanishnamedentityrecognition AT rebekahbaglini danskdomaingeneralizationofdanishnamedentityrecognition |