Soil Phosphorus Content, Organic Matter, and Elevation Are Key Determinants of Maize Harvest Index in Arid Regions

This study systematically investigates the mechanistic effects of multifactor interactions (including soil properties, climatic conditions, and cultivation practices) on the productivity parameters (grain yield, stover yield, dry biomass, harvest index) of maize cultivars of different maturity group...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhen Huo, Hengbati Wutanbieke, Jian Chen, Dongdong Zhong, Yongyu Chen, Zhanli Song, Xinhua Lv, Hegan Dong
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Agriculture
Subjects:
Online Access:https://www.mdpi.com/2077-0472/15/11/1207
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study systematically investigates the mechanistic effects of multifactor interactions (including soil properties, climatic conditions, and cultivation practices) on the productivity parameters (grain yield, stover yield, dry biomass, harvest index) of maize cultivars of different maturity groups in the arid region of Xinjiang, China. Twelve representative maize-growing counties were selected as study sites, where we collected maize samples to measure HI, grain yield, stover yield, and soil physicochemical properties (e.g., organic matter content, total nitrogen, and available phosphorus). Additionally, climate data (effective accumulated temperature) and agronomic parameters (planting density) were integrated to comprehensively analyze the interactive effects of multiple environmental factors on HI using structural equation modeling (SEM). The results demonstrated significant varietal differences in HI across maturity periods. Specifically, early-maturing cultivars showed the highest average HI (0.58), significantly exceeding those of medium-maturing (0.55) and late-maturing varieties (0.54). Environmental analysis further revealed that soil phosphorus content (both available and total phosphorus), elevation, and organic matter content significantly positively affected HI, whereas soil bulk density and electrical conductivity exhibited negative impacts. Notably, HI exhibited a strong negative correlation with stover yield (R<sup>2</sup> = 0.49), but remained relatively stable across different dry matter (DM) and grain yield levels. Despite the strong positive correlation between DM and grain yield (R<sup>2</sup> = 0.81), the relative stability of HI suggests that yield improvement requires balanced optimization of both DM and partitioning efficiency. This study provides crucial theoretical foundations for optimizing high-yield maize cultivation systems, regulating fertilizer application rates and their ratios, and improving the configuration of planting density in arid regions. These findings offer practical guidance for sustainable agricultural development in similar environments.
ISSN:2077-0472