The Surface Heat Flow of Mars at the Noachian–Hesperian Boundary
The time period around the Noachian–Hesperian boundary, 3.7 billionyears ago, was an epoch when great geodynamical and environmental changes occurred on Mars. Currently available remote sensing data are crucial for understanding the Martian heat loss pattern and its global thermal state in this tran...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-01-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-4292/17/2/274 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832587591319289856 |
---|---|
author | Javier Ruiz Laura M. Parro Isabel Egea-González Ignacio Romeo Julia Álvarez-Lozano Alberto Jiménez-Díaz |
author_facet | Javier Ruiz Laura M. Parro Isabel Egea-González Ignacio Romeo Julia Álvarez-Lozano Alberto Jiménez-Díaz |
author_sort | Javier Ruiz |
collection | DOAJ |
description | The time period around the Noachian–Hesperian boundary, 3.7 billionyears ago, was an epoch when great geodynamical and environmental changes occurred on Mars. Currently available remote sensing data are crucial for understanding the Martian heat loss pattern and its global thermal state in this transitional period. We here derive surface heat flows in specific locations based on the estimations of the depth of five large thrust faults in order to constrain both surface and mantle heat flows. Then, we use heat-producing element (HPE) abundances mapped from orbital measurements by the Gamma-Ray Spectrometer (GRS) onboard the Mars Odyssey 2001 spacecraft and geographical crustal thickness variations to produce a global model for the surface heat flow. The heat loss contribution of large mantle plumes beneath the Tharsis and Elysium magmatic provinces is also considered in our final model. We thus obtain a map of the heat flow variation across the Martian surface at the Noachian–Hesperian boundary. Our model also predicts an average heat flow between 32 and 50 mW <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="normal">m</mi><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula>, which implies that the heat loss of Mars at that time was lower than the total radioactive heat production of the planet, which has profound implications for the thermal history of Mars. |
format | Article |
id | doaj-art-aef32f6961684ff8b352ac1850cc9248 |
institution | Kabale University |
issn | 2072-4292 |
language | English |
publishDate | 2025-01-01 |
publisher | MDPI AG |
record_format | Article |
series | Remote Sensing |
spelling | doaj-art-aef32f6961684ff8b352ac1850cc92482025-01-24T13:47:57ZengMDPI AGRemote Sensing2072-42922025-01-0117227410.3390/rs17020274The Surface Heat Flow of Mars at the Noachian–Hesperian BoundaryJavier Ruiz0Laura M. Parro1Isabel Egea-González2Ignacio Romeo3Julia Álvarez-Lozano4Alberto Jiménez-Díaz5Departamento de Geodinámica, Estratigrafía y Paleontología, Universidad Complutense de Madrid, 28040 Madrid, SpainInstituto Universitario de Física Aplicada a las Ciencias y las Tecnologías, Universidad de Alicante, 03690 San Vicente del Raspeig, SpainDepartamento de Física Aplicada, Escuela Superior de Ingeniería, Universidad de Cádiz, 11519 Puerto Real, SpainDepartamento de Geodinámica, Estratigrafía y Paleontología, Universidad Complutense de Madrid, 28040 Madrid, SpainDepartamento de Geodinámica, Estratigrafía y Paleontología, Universidad Complutense de Madrid, 28040 Madrid, SpainDepartamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, 28933 Móstoles, SpainThe time period around the Noachian–Hesperian boundary, 3.7 billionyears ago, was an epoch when great geodynamical and environmental changes occurred on Mars. Currently available remote sensing data are crucial for understanding the Martian heat loss pattern and its global thermal state in this transitional period. We here derive surface heat flows in specific locations based on the estimations of the depth of five large thrust faults in order to constrain both surface and mantle heat flows. Then, we use heat-producing element (HPE) abundances mapped from orbital measurements by the Gamma-Ray Spectrometer (GRS) onboard the Mars Odyssey 2001 spacecraft and geographical crustal thickness variations to produce a global model for the surface heat flow. The heat loss contribution of large mantle plumes beneath the Tharsis and Elysium magmatic provinces is also considered in our final model. We thus obtain a map of the heat flow variation across the Martian surface at the Noachian–Hesperian boundary. Our model also predicts an average heat flow between 32 and 50 mW <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="normal">m</mi><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula>, which implies that the heat loss of Mars at that time was lower than the total radioactive heat production of the planet, which has profound implications for the thermal history of Mars.https://www.mdpi.com/2072-4292/17/2/274surface heat flowheat lossheat-producing elementsGRS observationscrustal thickness |
spellingShingle | Javier Ruiz Laura M. Parro Isabel Egea-González Ignacio Romeo Julia Álvarez-Lozano Alberto Jiménez-Díaz The Surface Heat Flow of Mars at the Noachian–Hesperian Boundary Remote Sensing surface heat flow heat loss heat-producing elements GRS observations crustal thickness |
title | The Surface Heat Flow of Mars at the Noachian–Hesperian Boundary |
title_full | The Surface Heat Flow of Mars at the Noachian–Hesperian Boundary |
title_fullStr | The Surface Heat Flow of Mars at the Noachian–Hesperian Boundary |
title_full_unstemmed | The Surface Heat Flow of Mars at the Noachian–Hesperian Boundary |
title_short | The Surface Heat Flow of Mars at the Noachian–Hesperian Boundary |
title_sort | surface heat flow of mars at the noachian hesperian boundary |
topic | surface heat flow heat loss heat-producing elements GRS observations crustal thickness |
url | https://www.mdpi.com/2072-4292/17/2/274 |
work_keys_str_mv | AT javierruiz thesurfaceheatflowofmarsatthenoachianhesperianboundary AT lauramparro thesurfaceheatflowofmarsatthenoachianhesperianboundary AT isabelegeagonzalez thesurfaceheatflowofmarsatthenoachianhesperianboundary AT ignacioromeo thesurfaceheatflowofmarsatthenoachianhesperianboundary AT juliaalvarezlozano thesurfaceheatflowofmarsatthenoachianhesperianboundary AT albertojimenezdiaz thesurfaceheatflowofmarsatthenoachianhesperianboundary AT javierruiz surfaceheatflowofmarsatthenoachianhesperianboundary AT lauramparro surfaceheatflowofmarsatthenoachianhesperianboundary AT isabelegeagonzalez surfaceheatflowofmarsatthenoachianhesperianboundary AT ignacioromeo surfaceheatflowofmarsatthenoachianhesperianboundary AT juliaalvarezlozano surfaceheatflowofmarsatthenoachianhesperianboundary AT albertojimenezdiaz surfaceheatflowofmarsatthenoachianhesperianboundary |