The Surface Heat Flow of Mars at the Noachian–Hesperian Boundary

The time period around the Noachian–Hesperian boundary, 3.7 billionyears ago, was an epoch when great geodynamical and environmental changes occurred on Mars. Currently available remote sensing data are crucial for understanding the Martian heat loss pattern and its global thermal state in this tran...

Full description

Saved in:
Bibliographic Details
Main Authors: Javier Ruiz, Laura M. Parro, Isabel Egea-González, Ignacio Romeo, Julia Álvarez-Lozano, Alberto Jiménez-Díaz
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/2/274
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832587591319289856
author Javier Ruiz
Laura M. Parro
Isabel Egea-González
Ignacio Romeo
Julia Álvarez-Lozano
Alberto Jiménez-Díaz
author_facet Javier Ruiz
Laura M. Parro
Isabel Egea-González
Ignacio Romeo
Julia Álvarez-Lozano
Alberto Jiménez-Díaz
author_sort Javier Ruiz
collection DOAJ
description The time period around the Noachian–Hesperian boundary, 3.7 billionyears ago, was an epoch when great geodynamical and environmental changes occurred on Mars. Currently available remote sensing data are crucial for understanding the Martian heat loss pattern and its global thermal state in this transitional period. We here derive surface heat flows in specific locations based on the estimations of the depth of five large thrust faults in order to constrain both surface and mantle heat flows. Then, we use heat-producing element (HPE) abundances mapped from orbital measurements by the Gamma-Ray Spectrometer (GRS) onboard the Mars Odyssey 2001 spacecraft and geographical crustal thickness variations to produce a global model for the surface heat flow. The heat loss contribution of large mantle plumes beneath the Tharsis and Elysium magmatic provinces is also considered in our final model. We thus obtain a map of the heat flow variation across the Martian surface at the Noachian–Hesperian boundary. Our model also predicts an average heat flow between 32 and 50 mW <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="normal">m</mi><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula>, which implies that the heat loss of Mars at that time was lower than the total radioactive heat production of the planet, which has profound implications for the thermal history of Mars.
format Article
id doaj-art-aef32f6961684ff8b352ac1850cc9248
institution Kabale University
issn 2072-4292
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Remote Sensing
spelling doaj-art-aef32f6961684ff8b352ac1850cc92482025-01-24T13:47:57ZengMDPI AGRemote Sensing2072-42922025-01-0117227410.3390/rs17020274The Surface Heat Flow of Mars at the Noachian–Hesperian BoundaryJavier Ruiz0Laura M. Parro1Isabel Egea-González2Ignacio Romeo3Julia Álvarez-Lozano4Alberto Jiménez-Díaz5Departamento de Geodinámica, Estratigrafía y Paleontología, Universidad Complutense de Madrid, 28040 Madrid, SpainInstituto Universitario de Física Aplicada a las Ciencias y las Tecnologías, Universidad de Alicante, 03690 San Vicente del Raspeig, SpainDepartamento de Física Aplicada, Escuela Superior de Ingeniería, Universidad de Cádiz, 11519 Puerto Real, SpainDepartamento de Geodinámica, Estratigrafía y Paleontología, Universidad Complutense de Madrid, 28040 Madrid, SpainDepartamento de Geodinámica, Estratigrafía y Paleontología, Universidad Complutense de Madrid, 28040 Madrid, SpainDepartamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, 28933 Móstoles, SpainThe time period around the Noachian–Hesperian boundary, 3.7 billionyears ago, was an epoch when great geodynamical and environmental changes occurred on Mars. Currently available remote sensing data are crucial for understanding the Martian heat loss pattern and its global thermal state in this transitional period. We here derive surface heat flows in specific locations based on the estimations of the depth of five large thrust faults in order to constrain both surface and mantle heat flows. Then, we use heat-producing element (HPE) abundances mapped from orbital measurements by the Gamma-Ray Spectrometer (GRS) onboard the Mars Odyssey 2001 spacecraft and geographical crustal thickness variations to produce a global model for the surface heat flow. The heat loss contribution of large mantle plumes beneath the Tharsis and Elysium magmatic provinces is also considered in our final model. We thus obtain a map of the heat flow variation across the Martian surface at the Noachian–Hesperian boundary. Our model also predicts an average heat flow between 32 and 50 mW <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="normal">m</mi><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula>, which implies that the heat loss of Mars at that time was lower than the total radioactive heat production of the planet, which has profound implications for the thermal history of Mars.https://www.mdpi.com/2072-4292/17/2/274surface heat flowheat lossheat-producing elementsGRS observationscrustal thickness
spellingShingle Javier Ruiz
Laura M. Parro
Isabel Egea-González
Ignacio Romeo
Julia Álvarez-Lozano
Alberto Jiménez-Díaz
The Surface Heat Flow of Mars at the Noachian–Hesperian Boundary
Remote Sensing
surface heat flow
heat loss
heat-producing elements
GRS observations
crustal thickness
title The Surface Heat Flow of Mars at the Noachian–Hesperian Boundary
title_full The Surface Heat Flow of Mars at the Noachian–Hesperian Boundary
title_fullStr The Surface Heat Flow of Mars at the Noachian–Hesperian Boundary
title_full_unstemmed The Surface Heat Flow of Mars at the Noachian–Hesperian Boundary
title_short The Surface Heat Flow of Mars at the Noachian–Hesperian Boundary
title_sort surface heat flow of mars at the noachian hesperian boundary
topic surface heat flow
heat loss
heat-producing elements
GRS observations
crustal thickness
url https://www.mdpi.com/2072-4292/17/2/274
work_keys_str_mv AT javierruiz thesurfaceheatflowofmarsatthenoachianhesperianboundary
AT lauramparro thesurfaceheatflowofmarsatthenoachianhesperianboundary
AT isabelegeagonzalez thesurfaceheatflowofmarsatthenoachianhesperianboundary
AT ignacioromeo thesurfaceheatflowofmarsatthenoachianhesperianboundary
AT juliaalvarezlozano thesurfaceheatflowofmarsatthenoachianhesperianboundary
AT albertojimenezdiaz thesurfaceheatflowofmarsatthenoachianhesperianboundary
AT javierruiz surfaceheatflowofmarsatthenoachianhesperianboundary
AT lauramparro surfaceheatflowofmarsatthenoachianhesperianboundary
AT isabelegeagonzalez surfaceheatflowofmarsatthenoachianhesperianboundary
AT ignacioromeo surfaceheatflowofmarsatthenoachianhesperianboundary
AT juliaalvarezlozano surfaceheatflowofmarsatthenoachianhesperianboundary
AT albertojimenezdiaz surfaceheatflowofmarsatthenoachianhesperianboundary