Evaluation of potential productivity in coniferous forests by integrating field data and aerial laser scanning in Hidalgo, México
Aim of study: To predict the productivity potential of a managed conifer forest by estimating the site index from Light Detection and Ranging (LiDAR) data. Study area: Intensive Carbon Monitoring Site Atopixco, Hidalgo, Mexico. Material and methods: A total of 329 observations from five remea...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Consejo Superior de Investigaciones Científicas (CSIC)
2025-01-01
|
Series: | Forest Systems |
Subjects: | |
Online Access: | https://fs.revistas.csic.es/index.php/fs/article/view/20886 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832592304032972800 |
---|---|
author | Rodrigo Ramos-Madrigal Héctor M. de los Santos-Posadas José René Valdez-Lazalde Efraín Velasco-Bautista Gregorio Ángeles-Pérez Alma Delia Ortiz-Reyes |
author_facet | Rodrigo Ramos-Madrigal Héctor M. de los Santos-Posadas José René Valdez-Lazalde Efraín Velasco-Bautista Gregorio Ángeles-Pérez Alma Delia Ortiz-Reyes |
author_sort | Rodrigo Ramos-Madrigal |
collection | DOAJ |
description |
Aim of study: To predict the productivity potential of a managed conifer forest by estimating the site index from Light Detection and Ranging (LiDAR) data.
Study area: Intensive Carbon Monitoring Site Atopixco, Hidalgo, Mexico.
Material and methods: A total of 329 observations from five remeasurements in permanent forest inventory sampling units were used to generate site index curves and metrics derived from a 2013 LiDAR scan. LiDAR elevation metrics were statistically related to field-observed dominant height (DH). Three models were fitted to predict DH as a function of LiDAR metrics, while nine height growth models were developed using the algebraic difference approach, at a base age of 40 years, using the ordinary least squares method and mixed effects models (MEM).
Main results: The 99th height percentile was the LiDAR metric that showed the greatest correlation with the observed DH. Its integration into a linear model was best suited to estimate DH with Adjusted Determination Coefficient (R2adj) of 0.97 and Root Mean Square Error (RMSE) of 0.31 m. The Hossfeld IV anamorphic model adjusted as MEM and autocorrelation corrected model showed the best performance for predicting DH growth with R2adj of 0.87 and RMSE of 2.11 m. The integration of both models into a Geographic Information System (GIS) allowed the spatially explicit construction of an accurate mosaic of the DH and site index to classify stand productivity in the study area.
Research highlights: Of the total area managed for timber purposes, 87% is classified as a heigh (≥31 m) and average (26 m) site index, while areas dedicated to conservation contain 13% of the area classified with low site index (≤21 m).
|
format | Article |
id | doaj-art-aed51add0b234f9f8af54a7391f838ef |
institution | Kabale University |
issn | 2171-5068 2171-9845 |
language | English |
publishDate | 2025-01-01 |
publisher | Consejo Superior de Investigaciones Científicas (CSIC) |
record_format | Article |
series | Forest Systems |
spelling | doaj-art-aed51add0b234f9f8af54a7391f838ef2025-01-21T11:28:07ZengConsejo Superior de Investigaciones Científicas (CSIC)Forest Systems2171-50682171-98452025-01-0133310.5424/fs/2024333-20886Evaluation of potential productivity in coniferous forests by integrating field data and aerial laser scanning in Hidalgo, MéxicoRodrigo Ramos-Madrigal0Héctor M. de los Santos-Posadas1José René Valdez-Lazalde2Efraín Velasco-Bautista3Gregorio Ángeles-Pérez4Alma Delia Ortiz-Reyes5Postgrado en Ciencias Forestales, Colegio de Postgraduados. Carretera México-Texcoco km 36.5. 56264 Texcoco, Estado de México, MéxicoPostgrado en Ciencias Forestales, Colegio de Postgraduados. Carretera México-Texcoco km 36.5. 56264 Texcoco, Estado de México, MéxicoPostgrado en Ciencias Forestales, Colegio de Postgraduados. Carretera México-Texcoco km 36.5. 56264 Texcoco, Estado de México, MéxicoCentro Nacional de Investigación Disciplinaria en Conservación y Mejoramiento de Ecosistemas Forestales (CENID-COMEF). Av. Progreso 5. Barrio de Santa Catarina, 04010 Alcaldía Coyoacán, Ciudad de México, MéxicoPostgrado en Ciencias Forestales, Colegio de Postgraduados. Carretera México-Texcoco km 36.5. 56264 Texcoco, Estado de México, MéxicoCentro Nacional de Investigación Disciplinaria en Conservación y Mejoramiento de Ecosistemas Forestales (CENID-COMEF). Av. Progreso 5. Barrio de Santa Catarina, 04010 Alcaldía Coyoacán, Ciudad de México, México Aim of study: To predict the productivity potential of a managed conifer forest by estimating the site index from Light Detection and Ranging (LiDAR) data. Study area: Intensive Carbon Monitoring Site Atopixco, Hidalgo, Mexico. Material and methods: A total of 329 observations from five remeasurements in permanent forest inventory sampling units were used to generate site index curves and metrics derived from a 2013 LiDAR scan. LiDAR elevation metrics were statistically related to field-observed dominant height (DH). Three models were fitted to predict DH as a function of LiDAR metrics, while nine height growth models were developed using the algebraic difference approach, at a base age of 40 years, using the ordinary least squares method and mixed effects models (MEM). Main results: The 99th height percentile was the LiDAR metric that showed the greatest correlation with the observed DH. Its integration into a linear model was best suited to estimate DH with Adjusted Determination Coefficient (R2adj) of 0.97 and Root Mean Square Error (RMSE) of 0.31 m. The Hossfeld IV anamorphic model adjusted as MEM and autocorrelation corrected model showed the best performance for predicting DH growth with R2adj of 0.87 and RMSE of 2.11 m. The integration of both models into a Geographic Information System (GIS) allowed the spatially explicit construction of an accurate mosaic of the DH and site index to classify stand productivity in the study area. Research highlights: Of the total area managed for timber purposes, 87% is classified as a heigh (≥31 m) and average (26 m) site index, while areas dedicated to conservation contain 13% of the area classified with low site index (≤21 m). https://fs.revistas.csic.es/index.php/fs/article/view/20886Algebraic difference approachALSDominant heightForest inventoryHeight growth |
spellingShingle | Rodrigo Ramos-Madrigal Héctor M. de los Santos-Posadas José René Valdez-Lazalde Efraín Velasco-Bautista Gregorio Ángeles-Pérez Alma Delia Ortiz-Reyes Evaluation of potential productivity in coniferous forests by integrating field data and aerial laser scanning in Hidalgo, México Forest Systems Algebraic difference approach ALS Dominant height Forest inventory Height growth |
title | Evaluation of potential productivity in coniferous forests by integrating field data and aerial laser scanning in Hidalgo, México |
title_full | Evaluation of potential productivity in coniferous forests by integrating field data and aerial laser scanning in Hidalgo, México |
title_fullStr | Evaluation of potential productivity in coniferous forests by integrating field data and aerial laser scanning in Hidalgo, México |
title_full_unstemmed | Evaluation of potential productivity in coniferous forests by integrating field data and aerial laser scanning in Hidalgo, México |
title_short | Evaluation of potential productivity in coniferous forests by integrating field data and aerial laser scanning in Hidalgo, México |
title_sort | evaluation of potential productivity in coniferous forests by integrating field data and aerial laser scanning in hidalgo mexico |
topic | Algebraic difference approach ALS Dominant height Forest inventory Height growth |
url | https://fs.revistas.csic.es/index.php/fs/article/view/20886 |
work_keys_str_mv | AT rodrigoramosmadrigal evaluationofpotentialproductivityinconiferousforestsbyintegratingfielddataandaeriallaserscanninginhidalgomexico AT hectormdelossantosposadas evaluationofpotentialproductivityinconiferousforestsbyintegratingfielddataandaeriallaserscanninginhidalgomexico AT joserenevaldezlazalde evaluationofpotentialproductivityinconiferousforestsbyintegratingfielddataandaeriallaserscanninginhidalgomexico AT efrainvelascobautista evaluationofpotentialproductivityinconiferousforestsbyintegratingfielddataandaeriallaserscanninginhidalgomexico AT gregorioangelesperez evaluationofpotentialproductivityinconiferousforestsbyintegratingfielddataandaeriallaserscanninginhidalgomexico AT almadeliaortizreyes evaluationofpotentialproductivityinconiferousforestsbyintegratingfielddataandaeriallaserscanninginhidalgomexico |