Evaluation of potential productivity in coniferous forests by integrating field data and aerial laser scanning in Hidalgo, México

Aim of study: To predict the productivity potential of a managed conifer forest by estimating the site index from Light Detection and Ranging (LiDAR) data. Study area: Intensive Carbon Monitoring Site Atopixco, Hidalgo, Mexico. Material and methods: A total of 329 observations from five remea...

Full description

Saved in:
Bibliographic Details
Main Authors: Rodrigo Ramos-Madrigal, Héctor M. de los Santos-Posadas, José René Valdez-Lazalde, Efraín Velasco-Bautista, Gregorio Ángeles-Pérez, Alma Delia Ortiz-Reyes
Format: Article
Language:English
Published: Consejo Superior de Investigaciones Científicas (CSIC) 2025-01-01
Series:Forest Systems
Subjects:
Online Access:https://fs.revistas.csic.es/index.php/fs/article/view/20886
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832592304032972800
author Rodrigo Ramos-Madrigal
Héctor M. de los Santos-Posadas
José René Valdez-Lazalde
Efraín Velasco-Bautista
Gregorio Ángeles-Pérez
Alma Delia Ortiz-Reyes
author_facet Rodrigo Ramos-Madrigal
Héctor M. de los Santos-Posadas
José René Valdez-Lazalde
Efraín Velasco-Bautista
Gregorio Ángeles-Pérez
Alma Delia Ortiz-Reyes
author_sort Rodrigo Ramos-Madrigal
collection DOAJ
description Aim of study: To predict the productivity potential of a managed conifer forest by estimating the site index from Light Detection and Ranging (LiDAR) data. Study area: Intensive Carbon Monitoring Site Atopixco, Hidalgo, Mexico. Material and methods: A total of 329 observations from five remeasurements in permanent forest inventory sampling units were used to generate site index curves and metrics derived from a 2013 LiDAR scan. LiDAR elevation metrics were statistically related to field-observed dominant height (DH). Three models were fitted to predict DH as a function of LiDAR metrics, while nine height growth models were developed using the algebraic difference approach, at a base age of 40 years, using the ordinary least squares method and mixed effects models (MEM). Main results: The 99th height percentile was the LiDAR metric that showed the greatest correlation with the observed DH. Its integration into a linear model was best suited to estimate DH with Adjusted Determination Coefficient (R2adj) of 0.97 and Root Mean Square Error (RMSE) of 0.31 m. The Hossfeld IV anamorphic model adjusted as MEM and autocorrelation corrected model showed the best performance for predicting DH growth with R2adj of 0.87 and RMSE of 2.11 m. The integration of both models into a Geographic Information System (GIS) allowed the spatially explicit construction of an accurate mosaic of the DH and site index to classify stand productivity in the study area. Research highlights: Of the total area managed for timber purposes, 87% is classified as a heigh (≥31 m) and average (26 m) site index, while areas dedicated to conservation contain 13% of the area classified with low site index (≤21 m).
format Article
id doaj-art-aed51add0b234f9f8af54a7391f838ef
institution Kabale University
issn 2171-5068
2171-9845
language English
publishDate 2025-01-01
publisher Consejo Superior de Investigaciones Científicas (CSIC)
record_format Article
series Forest Systems
spelling doaj-art-aed51add0b234f9f8af54a7391f838ef2025-01-21T11:28:07ZengConsejo Superior de Investigaciones Científicas (CSIC)Forest Systems2171-50682171-98452025-01-0133310.5424/fs/2024333-20886Evaluation of potential productivity in coniferous forests by integrating field data and aerial laser scanning in Hidalgo, MéxicoRodrigo Ramos-Madrigal0Héctor M. de los Santos-Posadas1José René Valdez-Lazalde2Efraín Velasco-Bautista3Gregorio Ángeles-Pérez4Alma Delia Ortiz-Reyes5Postgrado en Ciencias Forestales, Colegio de Postgraduados. Carretera México-Texcoco km 36.5. 56264 Texcoco, Estado de México, MéxicoPostgrado en Ciencias Forestales, Colegio de Postgraduados. Carretera México-Texcoco km 36.5. 56264 Texcoco, Estado de México, MéxicoPostgrado en Ciencias Forestales, Colegio de Postgraduados. Carretera México-Texcoco km 36.5. 56264 Texcoco, Estado de México, MéxicoCentro Nacional de Investigación Disciplinaria en Conservación y Mejoramiento de Ecosistemas Forestales (CENID-COMEF). Av. Progreso 5. Barrio de Santa Catarina, 04010 Alcaldía Coyoacán, Ciudad de México, MéxicoPostgrado en Ciencias Forestales, Colegio de Postgraduados. Carretera México-Texcoco km 36.5. 56264 Texcoco, Estado de México, MéxicoCentro Nacional de Investigación Disciplinaria en Conservación y Mejoramiento de Ecosistemas Forestales (CENID-COMEF). Av. Progreso 5. Barrio de Santa Catarina, 04010 Alcaldía Coyoacán, Ciudad de México, México Aim of study: To predict the productivity potential of a managed conifer forest by estimating the site index from Light Detection and Ranging (LiDAR) data. Study area: Intensive Carbon Monitoring Site Atopixco, Hidalgo, Mexico. Material and methods: A total of 329 observations from five remeasurements in permanent forest inventory sampling units were used to generate site index curves and metrics derived from a 2013 LiDAR scan. LiDAR elevation metrics were statistically related to field-observed dominant height (DH). Three models were fitted to predict DH as a function of LiDAR metrics, while nine height growth models were developed using the algebraic difference approach, at a base age of 40 years, using the ordinary least squares method and mixed effects models (MEM). Main results: The 99th height percentile was the LiDAR metric that showed the greatest correlation with the observed DH. Its integration into a linear model was best suited to estimate DH with Adjusted Determination Coefficient (R2adj) of 0.97 and Root Mean Square Error (RMSE) of 0.31 m. The Hossfeld IV anamorphic model adjusted as MEM and autocorrelation corrected model showed the best performance for predicting DH growth with R2adj of 0.87 and RMSE of 2.11 m. The integration of both models into a Geographic Information System (GIS) allowed the spatially explicit construction of an accurate mosaic of the DH and site index to classify stand productivity in the study area. Research highlights: Of the total area managed for timber purposes, 87% is classified as a heigh (≥31 m) and average (26 m) site index, while areas dedicated to conservation contain 13% of the area classified with low site index (≤21 m). https://fs.revistas.csic.es/index.php/fs/article/view/20886Algebraic difference approachALSDominant heightForest inventoryHeight growth
spellingShingle Rodrigo Ramos-Madrigal
Héctor M. de los Santos-Posadas
José René Valdez-Lazalde
Efraín Velasco-Bautista
Gregorio Ángeles-Pérez
Alma Delia Ortiz-Reyes
Evaluation of potential productivity in coniferous forests by integrating field data and aerial laser scanning in Hidalgo, México
Forest Systems
Algebraic difference approach
ALS
Dominant height
Forest inventory
Height growth
title Evaluation of potential productivity in coniferous forests by integrating field data and aerial laser scanning in Hidalgo, México
title_full Evaluation of potential productivity in coniferous forests by integrating field data and aerial laser scanning in Hidalgo, México
title_fullStr Evaluation of potential productivity in coniferous forests by integrating field data and aerial laser scanning in Hidalgo, México
title_full_unstemmed Evaluation of potential productivity in coniferous forests by integrating field data and aerial laser scanning in Hidalgo, México
title_short Evaluation of potential productivity in coniferous forests by integrating field data and aerial laser scanning in Hidalgo, México
title_sort evaluation of potential productivity in coniferous forests by integrating field data and aerial laser scanning in hidalgo mexico
topic Algebraic difference approach
ALS
Dominant height
Forest inventory
Height growth
url https://fs.revistas.csic.es/index.php/fs/article/view/20886
work_keys_str_mv AT rodrigoramosmadrigal evaluationofpotentialproductivityinconiferousforestsbyintegratingfielddataandaeriallaserscanninginhidalgomexico
AT hectormdelossantosposadas evaluationofpotentialproductivityinconiferousforestsbyintegratingfielddataandaeriallaserscanninginhidalgomexico
AT joserenevaldezlazalde evaluationofpotentialproductivityinconiferousforestsbyintegratingfielddataandaeriallaserscanninginhidalgomexico
AT efrainvelascobautista evaluationofpotentialproductivityinconiferousforestsbyintegratingfielddataandaeriallaserscanninginhidalgomexico
AT gregorioangelesperez evaluationofpotentialproductivityinconiferousforestsbyintegratingfielddataandaeriallaserscanninginhidalgomexico
AT almadeliaortizreyes evaluationofpotentialproductivityinconiferousforestsbyintegratingfielddataandaeriallaserscanninginhidalgomexico