Pressure Transient Behavior of Horizontal Well with Time-Dependent Fracture Conductivity in Tight Oil Reservoirs
This work presents a discussion on the pressure transient response of multistage fractured horizontal well in tight oil reservoirs. Based on Green’s function, a semianalytical model is put forward to obtain the behavior. Our proposed model accounts for fluid flow in four contiguous regions of the ti...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2017-01-01
|
Series: | Geofluids |
Online Access: | http://dx.doi.org/10.1155/2017/5279792 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This work presents a discussion on the pressure transient response of multistage fractured horizontal well in tight oil reservoirs. Based on Green’s function, a semianalytical model is put forward to obtain the behavior. Our proposed model accounts for fluid flow in four contiguous regions of the tight formation by using pressure continuity and mass conservation. The time-dependent conductivity of hydraulic fractures, which is ignored in previous models but highlighted by recent experiments, is also taken into account in our proposed model. We also include the effect of pressure drop along a horizontal wellbore. We substantiate the validity of our model and analyze the different flow regimes, as well as the effects of initial conductivity, fracture distribution, and geometry on the pressure transient behavior. Our results suggest that the decrease of fracture conductivity has a tremendous effect on the well performance. Finally, we compare our model results with the field data from a multistage fractured horizontal well in Jimsar sag, Xinjiang oilfield, and a good agreement is obtained. |
---|---|
ISSN: | 1468-8115 1468-8123 |