Optimization of Hydraulic Machinery Bladings by Multilevel CFD Techniques
The numerical design optimization for complex hydraulic machinery bladings requires a high number of design parameters and the use of a precise CFD solver yielding high computational costs. To reduce the CPU time needed, a multilevel CFD method has been developed. First of all, the 3D blade geometry...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2005-01-01
|
Series: | International Journal of Rotating Machinery |
Online Access: | http://dx.doi.org/10.1155/IJRM.2005.161 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The numerical design optimization for complex hydraulic machinery bladings requires a high number of design parameters and the use of a precise CFD solver yielding high computational costs. To reduce the CPU time needed, a multilevel CFD method has been developed. First of all, the 3D blade geometry is parametrized by
means of a geometric design tool to reduce the number of design parameters. To keep geometric accuracy, a special B-spline modification technique has been developed. On the first optimization level, a quasi-3D Euler code (EQ3D) is applied. To guarantee a sufficiently accurate result, the code is calibrated by a Navier-Stokes recalculation of the initial design and can be recalibrated after a number of optimization steps by another Navier-Stokes computation. After having got a convergent solution, the optimization process is repeated on the second level using a full 3D Euler code yielding a more accurate flow
prediction. Finally, a 3D Navier-Stokes code is applied on the third level to search for the optimum optimorum by means of a fine-tuning of the geometrical parameters. To show the potential of the developed optimization system, the runner blading of a water turbine having a specific speed nq=411/min was optimized applying the multilevel approach. |
---|---|
ISSN: | 1023-621X 1542-3034 |