An in vivo intermediate filament assembly model

A model is developed to study the in vivo intermediate filament organization in terms of repartition between four different structural states: soluble proteins, particles, short, and long filaments. An analysis is conducted, showing that the system has a unique, globally asymptotically stable equili...

Full description

Saved in:
Bibliographic Details
Main Authors: Stéphanie Portet, Julien Arino
Format: Article
Language:English
Published: AIMS Press 2008-11-01
Series:Mathematical Biosciences and Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mbe.2009.6.117
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A model is developed to study the in vivo intermediate filament organization in terms of repartition between four different structural states: soluble proteins, particles, short, and long filaments. An analysis is conducted, showing that the system has a unique, globally asymptotically stable equilibrium. By means of sensitivity analysis, the influence of parameters on the system is studied. It is shown that, in agreement with biological observations, posttranslational modifications of intermediate filament proteins resulting in filament solubilization are the main regulators of the intermediate filament organization. A high signalling-dependent solubilization of filaments favours the intermediate filament aggregation in particles.
ISSN:1551-0018