Conditional Random Fields and Supervised Learning in Automated Skin Lesion Diagnosis

Many subproblems in automated skin lesion diagnosis (ASLD) can be unified under a single generalization of assigning a label, from an predefined set, to each pixel in an image. We first formalize this generalization and then present two probabilistic models capable of solving it. The first model is...

Full description

Saved in:
Bibliographic Details
Main Authors: Paul Wighton, Tim K. Lee, Greg Mori, Harvey Lui, David I. McLean, M. Stella Atkins
Format: Article
Language:English
Published: Wiley 2011-01-01
Series:International Journal of Biomedical Imaging
Online Access:http://dx.doi.org/10.1155/2011/846312
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Many subproblems in automated skin lesion diagnosis (ASLD) can be unified under a single generalization of assigning a label, from an predefined set, to each pixel in an image. We first formalize this generalization and then present two probabilistic models capable of solving it. The first model is based on independent pixel labeling using maximum a-posteriori (MAP) estimation. The second model is based on conditional random fields (CRFs), where dependencies between pixels are defined using a graph structure. Furthermore, we demonstrate how supervised learning and an appropriate training set can be used to automatically determine all model parameters. We evaluate both models' ability to segment a challenging dataset consisting of 116 images and compare our results to 5 previously published methods.
ISSN:1687-4188
1687-4196