Experimental Assessment of Finite Control Set - Model Predictive Control Applied to a Dual-Converter-Based Rectifier With a Floating DC link

This paper proposes a reduced-computation-burden Finite Control Set - Model Predictive Control (FCS-MPC) applied to a dual-converter-based rectifier with a floating DC link. The main goal of this paper is providing a proof of concept of the discussed system employing the proposed FCS-MPC, highlight...

Full description

Saved in:
Bibliographic Details
Main Authors: Liane M. de Oliveira, Victor F. M. B. Melo, Iaryssa P. Teles, Emerson de L. Soares, Edison R. C. da Silva, Bruna S. Gehrke, Edgard L. L. Fabrício, Gilielson F. da Paz
Format: Article
Language:English
Published: Associação Brasileira de Eletrônica de Potência 2025-01-01
Series:Eletrônica de Potência
Subjects:
Online Access:https://journal.sobraep.org.br/index.php/rep/article/view/997
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper proposes a reduced-computation-burden Finite Control Set - Model Predictive Control (FCS-MPC) applied to a dual-converter-based rectifier with a floating DC link. The main goal of this paper is providing a proof of concept of the discussed system employing the proposed FCS-MPC, highlighting its feasibility, simple multivariable control and straightforward implementation. The proposed FCS-MPC reduces the number of tested vectors from the available 64 to only nine, efficiently controlling grid currents and floating DC-link voltage. To evaluate the performance, steady- and transient-state simulations were carried out to compare the proposed FCS-MPC with the conventional PI-based method. The results indicate that FCS-MPC provides a better dynamic response than the PI-based method. However, its total harmonic distortion (THD) at the same sampling frequency is higher, as the PI-based method benefits from a modulation stage that reduces the current ripple. Additionally, the proposed FCS-MPC shows significantly lower switching losses than the PI-based approach. On the other hand, for the same switching frequency, the proposed FCS-MPC presents a somewhat higher, but similar THD and losses values to the PI-based method. Experimental results further validate the feasibility of the proposed FCS-MPC, reinforcing its potential as an efficient alternative to traditional control strategies in dual-converter-based-rectifier.
ISSN:1414-8862
1984-557X