Automated Tree Detection Using Image Processing and Multisource Data

This paper presents a method for the automatic detection and assessment of trees and tree-covered areas in Katowice, the capital of the Upper Silesian Industrial Region in southern Poland. The proposed approach utilizes satellite imagery and height maps, employing image-processing techniques and int...

Full description

Saved in:
Bibliographic Details
Main Authors: Grzegorz Dziczkowski, Barbara Probierz, Przemysław Juszczuk, Piotr Stefański, Tomasz Jach, Szymon Głowania, Jan Kozak
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/2/667
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832589282681815040
author Grzegorz Dziczkowski
Barbara Probierz
Przemysław Juszczuk
Piotr Stefański
Tomasz Jach
Szymon Głowania
Jan Kozak
author_facet Grzegorz Dziczkowski
Barbara Probierz
Przemysław Juszczuk
Piotr Stefański
Tomasz Jach
Szymon Głowania
Jan Kozak
author_sort Grzegorz Dziczkowski
collection DOAJ
description This paper presents a method for the automatic detection and assessment of trees and tree-covered areas in Katowice, the capital of the Upper Silesian Industrial Region in southern Poland. The proposed approach utilizes satellite imagery and height maps, employing image-processing techniques and integrating data from various sources. We developed a data pipeline for gathering and pre-processing information, including vegetation data and numerical land-cover models, which were used to derive a new method for tree detection. Our findings confirm that automatic tree detection can significantly enhance the efficiency of urban tree management processes, contributing to the creation of greener and more resident-friendly cities.
format Article
id doaj-art-ad1e7c81c1be43d89df421b841883d55
institution Kabale University
issn 2076-3417
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Applied Sciences
spelling doaj-art-ad1e7c81c1be43d89df421b841883d552025-01-24T13:20:22ZengMDPI AGApplied Sciences2076-34172025-01-0115266710.3390/app15020667Automated Tree Detection Using Image Processing and Multisource DataGrzegorz Dziczkowski0Barbara Probierz1Przemysław Juszczuk2Piotr Stefański3Tomasz Jach4Szymon Głowania5Jan Kozak6Department of Machine Learning, University of Economics in Katowice, 1 Maja 50, 40-287 Katowice, PolandDepartment of Machine Learning, University of Economics in Katowice, 1 Maja 50, 40-287 Katowice, PolandDepartment of Machine Learning, University of Economics in Katowice, 1 Maja 50, 40-287 Katowice, PolandDepartment of Machine Learning, University of Economics in Katowice, 1 Maja 50, 40-287 Katowice, PolandDepartment of Machine Learning, University of Economics in Katowice, 1 Maja 50, 40-287 Katowice, PolandDepartment of Machine Learning, University of Economics in Katowice, 1 Maja 50, 40-287 Katowice, PolandDepartment of Machine Learning, University of Economics in Katowice, 1 Maja 50, 40-287 Katowice, PolandThis paper presents a method for the automatic detection and assessment of trees and tree-covered areas in Katowice, the capital of the Upper Silesian Industrial Region in southern Poland. The proposed approach utilizes satellite imagery and height maps, employing image-processing techniques and integrating data from various sources. We developed a data pipeline for gathering and pre-processing information, including vegetation data and numerical land-cover models, which were used to derive a new method for tree detection. Our findings confirm that automatic tree detection can significantly enhance the efficiency of urban tree management processes, contributing to the creation of greener and more resident-friendly cities.https://www.mdpi.com/2076-3417/15/2/667image processingdata integrationurban forestryremote sensingsustainable development
spellingShingle Grzegorz Dziczkowski
Barbara Probierz
Przemysław Juszczuk
Piotr Stefański
Tomasz Jach
Szymon Głowania
Jan Kozak
Automated Tree Detection Using Image Processing and Multisource Data
Applied Sciences
image processing
data integration
urban forestry
remote sensing
sustainable development
title Automated Tree Detection Using Image Processing and Multisource Data
title_full Automated Tree Detection Using Image Processing and Multisource Data
title_fullStr Automated Tree Detection Using Image Processing and Multisource Data
title_full_unstemmed Automated Tree Detection Using Image Processing and Multisource Data
title_short Automated Tree Detection Using Image Processing and Multisource Data
title_sort automated tree detection using image processing and multisource data
topic image processing
data integration
urban forestry
remote sensing
sustainable development
url https://www.mdpi.com/2076-3417/15/2/667
work_keys_str_mv AT grzegorzdziczkowski automatedtreedetectionusingimageprocessingandmultisourcedata
AT barbaraprobierz automatedtreedetectionusingimageprocessingandmultisourcedata
AT przemysławjuszczuk automatedtreedetectionusingimageprocessingandmultisourcedata
AT piotrstefanski automatedtreedetectionusingimageprocessingandmultisourcedata
AT tomaszjach automatedtreedetectionusingimageprocessingandmultisourcedata
AT szymongłowania automatedtreedetectionusingimageprocessingandmultisourcedata
AT jankozak automatedtreedetectionusingimageprocessingandmultisourcedata