Some Stability and Convergence of Additive Runge-Kutta Methods for Delay Differential Equations with Many Delays
This paper is devoted to the stability and convergence analysis of the additive Runge-Kutta methods with the Lagrangian interpolation (ARKLMs) for the numerical solution of a delay differential equation with many delays. GDN stability and D-Convergence are introduced and proved. It is shown that str...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2012-01-01
|
Series: | Journal of Applied Mathematics |
Online Access: | http://dx.doi.org/10.1155/2012/456814 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper is devoted to the stability and convergence analysis of the additive Runge-Kutta methods with the Lagrangian interpolation (ARKLMs) for the numerical solution of a delay differential equation with many delays. GDN stability and D-Convergence are introduced and proved. It is shown that strongly algebraically stability gives D-Convergence DA, DAS, and ASI stability give GDN stability. Some examples are given in the end of this paper which confirms our results. |
---|---|
ISSN: | 1110-757X 1687-0042 |