Gamma-Induced Transformations in PVC-Based Nanocomposites for Tailored Optical Properties

This study explores the effects of gamma irradiation on the properties of polyvinyl chloride (PVC):(50 nm)/CeO2:(10 nm)/TiO2 nanocomposite films. Gamma irradiation significantly enhances the optical conductivity (σopt) of the films, signifying increased light-to-current conversion efficiency. This i...

Full description

Saved in:
Bibliographic Details
Main Authors: Badriah Alshahrani, Ahmed Hassan Korna, Soad Saad Fares, Ahmed H. Ali
Format: Article
Language:English
Published: Wiley 2024-01-01
Series:International Journal of Polymer Science
Online Access:http://dx.doi.org/10.1155/2024/1969197
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study explores the effects of gamma irradiation on the properties of polyvinyl chloride (PVC):(50 nm)/CeO2:(10 nm)/TiO2 nanocomposite films. Gamma irradiation significantly enhances the optical conductivity (σopt) of the films, signifying increased light-to-current conversion efficiency. This improvement is attributed to a reduction in the bandgap and increased light absorption induced by irradiation. X-ray diffraction (XRD) analysis reveals a decrease in crystallinity due to disrupted atomic order within the nanocomposite. Williamson–Hall (W-H) plots show a dose-dependent reduction in crystallite size and a corresponding rise in lattice strain with increasing irradiation dose. Infrared (IR) spectroscopy suggests potential bond breaking of O-H groups and modifications in C=O functional groups upon irradiation. The absorption coefficient and binding energy exhibit a nonmonotonic response with increasing dose, reaching an optimum at around 100 kGy. These findings demonstrate the potential of gamma irradiation for tailoring the optoelectronic properties of PVC:(50 nm)/CeO2:(10 nm)/TiO2 nanocomposites. This work paves the way for the development of next-generation optoelectronic devices with optimized functionalities.
ISSN:1687-9430