Crack-Detection Algorithm Integrating Multi-Scale Information Gain with Global–Local Tight–Loose Coupling

In this study, an improved target-detection model based on information theory is proposed to address the difficulties of crack-detection tasks, such as slender target shapes, blurred boundaries, and complex backgrounds. By introducing a multi-scale information gain mechanism and a global–local featu...

Full description

Saved in:
Bibliographic Details
Main Authors: Yun Bai, Zhiyao Li, Runqi Liu, Jiayi Feng, Biao Li
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/27/2/165
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, an improved target-detection model based on information theory is proposed to address the difficulties of crack-detection tasks, such as slender target shapes, blurred boundaries, and complex backgrounds. By introducing a multi-scale information gain mechanism and a global–local feature coupling strategy, the model has significantly improved feature extraction and expression capabilities. Experimental results show that, on a single-crack dataset, the model’s mAP@50 and mAP@50-95 are 1.6% and 0.8% higher than the baseline model RT-DETR, respectively; on a multi-crack dataset, these two indicators are improved by 1.2% and 1.0%, respectively. The proposed method shows good robustness and detection accuracy in complex scenarios, providing new ideas and technical support for in-depth research in the field of crack detection.
ISSN:1099-4300