Construction and iterative redesign of synXVI a 903 kb synthetic Saccharomyces cerevisiae chromosome

Abstract The Sc2.0 global consortium to design and construct a synthetic genome based on the Saccharomyces cerevisiae genome commenced in 2006, comprising 16 synthetic chromosomes and a new-to-nature tRNA neochromosome. In this paper we describe assembly and debugging of the 902,994-bp synthetic Sac...

Full description

Saved in:
Bibliographic Details
Main Authors: Hugh D. Goold, Heinrich Kroukamp, Paige E. Erpf, Yu Zhao, Philip Kelso, Julie Calame, John J. B. Timmins, Elizabeth L. I. Wightman, Kai Peng, Alexander C. Carpenter, Briardo Llorente, Carmen Hawthorne, Samuel Clay, Niël van Wyk, Elizabeth L. Daniel, Fergus Harrison, Felix Meier, Robert D. Willows, Yizhi Cai, Roy S. K. Walker, Xin Xu, Monica I. Espinosa, Giovanni Stracquadanio, Joel S. Bader, Leslie A. Mitchell, Jef D. Boeke, Thomas C. Williams, Ian T. Paulsen, Isak S. Pretorius
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-024-55318-3
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832585585921884160
author Hugh D. Goold
Heinrich Kroukamp
Paige E. Erpf
Yu Zhao
Philip Kelso
Julie Calame
John J. B. Timmins
Elizabeth L. I. Wightman
Kai Peng
Alexander C. Carpenter
Briardo Llorente
Carmen Hawthorne
Samuel Clay
Niël van Wyk
Elizabeth L. Daniel
Fergus Harrison
Felix Meier
Robert D. Willows
Yizhi Cai
Roy S. K. Walker
Xin Xu
Monica I. Espinosa
Giovanni Stracquadanio
Joel S. Bader
Leslie A. Mitchell
Jef D. Boeke
Thomas C. Williams
Ian T. Paulsen
Isak S. Pretorius
author_facet Hugh D. Goold
Heinrich Kroukamp
Paige E. Erpf
Yu Zhao
Philip Kelso
Julie Calame
John J. B. Timmins
Elizabeth L. I. Wightman
Kai Peng
Alexander C. Carpenter
Briardo Llorente
Carmen Hawthorne
Samuel Clay
Niël van Wyk
Elizabeth L. Daniel
Fergus Harrison
Felix Meier
Robert D. Willows
Yizhi Cai
Roy S. K. Walker
Xin Xu
Monica I. Espinosa
Giovanni Stracquadanio
Joel S. Bader
Leslie A. Mitchell
Jef D. Boeke
Thomas C. Williams
Ian T. Paulsen
Isak S. Pretorius
author_sort Hugh D. Goold
collection DOAJ
description Abstract The Sc2.0 global consortium to design and construct a synthetic genome based on the Saccharomyces cerevisiae genome commenced in 2006, comprising 16 synthetic chromosomes and a new-to-nature tRNA neochromosome. In this paper we describe assembly and debugging of the 902,994-bp synthetic Saccharomyces cerevisiae chromosome synXVI of the Sc2.0 project. Application of the CRISPR D-BUGS protocol identified defective loci, which were modified to improve sporulation and recover wild-type like growth when grown on glycerol as a sole carbon source when grown at 37˚C. LoxPsym sites inserted downstream of dubious open reading frames impacted the 5’ UTR of genes required for optimal growth and were identified as a systematic cause of defective growth. Based on lessons learned from analysis of Sc2.0 defects and synXVI, an in-silico redesign of the synXVI chromosome was performed, which can be used as a blueprint for future synthetic yeast genome designs. The in-silico redesign of synXVI includes reduced PCR tag frequency, modified chunk and megachunk termini, and adjustments to allocation of loxPsym sites and TAA stop codons to dubious ORFs. This redesign provides a roadmap into applications of Sc2.0 strategies in non-yeast organisms.
format Article
id doaj-art-ac0d8dbbcd894c7a9517722842a34dd6
institution Kabale University
issn 2041-1723
language English
publishDate 2025-01-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-ac0d8dbbcd894c7a9517722842a34dd62025-01-26T12:42:10ZengNature PortfolioNature Communications2041-17232025-01-0116111410.1038/s41467-024-55318-3Construction and iterative redesign of synXVI a 903 kb synthetic Saccharomyces cerevisiae chromosomeHugh D. Goold0Heinrich Kroukamp1Paige E. Erpf2Yu Zhao3Philip Kelso4Julie Calame5John J. B. Timmins6Elizabeth L. I. Wightman7Kai Peng8Alexander C. Carpenter9Briardo Llorente10Carmen Hawthorne11Samuel Clay12Niël van Wyk13Elizabeth L. Daniel14Fergus Harrison15Felix Meier16Robert D. Willows17Yizhi Cai18Roy S. K. Walker19Xin Xu20Monica I. Espinosa21Giovanni Stracquadanio22Joel S. Bader23Leslie A. Mitchell24Jef D. Boeke25Thomas C. Williams26Ian T. Paulsen27Isak S. Pretorius28New South Wales Department of Primary Industries, Elizabeth Macarthur Agriculture Institute, Advanced Gene Technology Centre, Woodbridge RoadSchool of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie UniversitySchool of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie UniversityInstitute for Systems Genetics, NYU Langone HealthSchool of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie UniversitySchool of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie UniversitySchool of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie UniversitySchool of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie UniversitySchool of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie UniversitySchool of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie UniversitySchool of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie UniversitySchool of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie UniversitySchool of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie UniversitySchool of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie UniversitySchool of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie UniversitySchool of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie UniversitySchool of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie UniversitySchool of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie UniversityManchester Institute of Biotechnology, The University of Manchester, 131 Princess StreetSchool of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie UniversitySchool of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie UniversitySchool of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie UniversitySchool of Biological Sciences, The University of EdinburghDepartment of Biomedical Engineering, Johns Hopkins UniversityInstitute for Systems Genetics, NYU Langone HealthInstitute for Systems Genetics, NYU Langone HealthSchool of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie UniversitySchool of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie UniversitySchool of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie UniversityAbstract The Sc2.0 global consortium to design and construct a synthetic genome based on the Saccharomyces cerevisiae genome commenced in 2006, comprising 16 synthetic chromosomes and a new-to-nature tRNA neochromosome. In this paper we describe assembly and debugging of the 902,994-bp synthetic Saccharomyces cerevisiae chromosome synXVI of the Sc2.0 project. Application of the CRISPR D-BUGS protocol identified defective loci, which were modified to improve sporulation and recover wild-type like growth when grown on glycerol as a sole carbon source when grown at 37˚C. LoxPsym sites inserted downstream of dubious open reading frames impacted the 5’ UTR of genes required for optimal growth and were identified as a systematic cause of defective growth. Based on lessons learned from analysis of Sc2.0 defects and synXVI, an in-silico redesign of the synXVI chromosome was performed, which can be used as a blueprint for future synthetic yeast genome designs. The in-silico redesign of synXVI includes reduced PCR tag frequency, modified chunk and megachunk termini, and adjustments to allocation of loxPsym sites and TAA stop codons to dubious ORFs. This redesign provides a roadmap into applications of Sc2.0 strategies in non-yeast organisms.https://doi.org/10.1038/s41467-024-55318-3
spellingShingle Hugh D. Goold
Heinrich Kroukamp
Paige E. Erpf
Yu Zhao
Philip Kelso
Julie Calame
John J. B. Timmins
Elizabeth L. I. Wightman
Kai Peng
Alexander C. Carpenter
Briardo Llorente
Carmen Hawthorne
Samuel Clay
Niël van Wyk
Elizabeth L. Daniel
Fergus Harrison
Felix Meier
Robert D. Willows
Yizhi Cai
Roy S. K. Walker
Xin Xu
Monica I. Espinosa
Giovanni Stracquadanio
Joel S. Bader
Leslie A. Mitchell
Jef D. Boeke
Thomas C. Williams
Ian T. Paulsen
Isak S. Pretorius
Construction and iterative redesign of synXVI a 903 kb synthetic Saccharomyces cerevisiae chromosome
Nature Communications
title Construction and iterative redesign of synXVI a 903 kb synthetic Saccharomyces cerevisiae chromosome
title_full Construction and iterative redesign of synXVI a 903 kb synthetic Saccharomyces cerevisiae chromosome
title_fullStr Construction and iterative redesign of synXVI a 903 kb synthetic Saccharomyces cerevisiae chromosome
title_full_unstemmed Construction and iterative redesign of synXVI a 903 kb synthetic Saccharomyces cerevisiae chromosome
title_short Construction and iterative redesign of synXVI a 903 kb synthetic Saccharomyces cerevisiae chromosome
title_sort construction and iterative redesign of synxvi a 903 kb synthetic saccharomyces cerevisiae chromosome
url https://doi.org/10.1038/s41467-024-55318-3
work_keys_str_mv AT hughdgoold constructionanditerativeredesignofsynxvia903kbsyntheticsaccharomycescerevisiaechromosome
AT heinrichkroukamp constructionanditerativeredesignofsynxvia903kbsyntheticsaccharomycescerevisiaechromosome
AT paigeeerpf constructionanditerativeredesignofsynxvia903kbsyntheticsaccharomycescerevisiaechromosome
AT yuzhao constructionanditerativeredesignofsynxvia903kbsyntheticsaccharomycescerevisiaechromosome
AT philipkelso constructionanditerativeredesignofsynxvia903kbsyntheticsaccharomycescerevisiaechromosome
AT juliecalame constructionanditerativeredesignofsynxvia903kbsyntheticsaccharomycescerevisiaechromosome
AT johnjbtimmins constructionanditerativeredesignofsynxvia903kbsyntheticsaccharomycescerevisiaechromosome
AT elizabethliwightman constructionanditerativeredesignofsynxvia903kbsyntheticsaccharomycescerevisiaechromosome
AT kaipeng constructionanditerativeredesignofsynxvia903kbsyntheticsaccharomycescerevisiaechromosome
AT alexanderccarpenter constructionanditerativeredesignofsynxvia903kbsyntheticsaccharomycescerevisiaechromosome
AT briardollorente constructionanditerativeredesignofsynxvia903kbsyntheticsaccharomycescerevisiaechromosome
AT carmenhawthorne constructionanditerativeredesignofsynxvia903kbsyntheticsaccharomycescerevisiaechromosome
AT samuelclay constructionanditerativeredesignofsynxvia903kbsyntheticsaccharomycescerevisiaechromosome
AT nielvanwyk constructionanditerativeredesignofsynxvia903kbsyntheticsaccharomycescerevisiaechromosome
AT elizabethldaniel constructionanditerativeredesignofsynxvia903kbsyntheticsaccharomycescerevisiaechromosome
AT fergusharrison constructionanditerativeredesignofsynxvia903kbsyntheticsaccharomycescerevisiaechromosome
AT felixmeier constructionanditerativeredesignofsynxvia903kbsyntheticsaccharomycescerevisiaechromosome
AT robertdwillows constructionanditerativeredesignofsynxvia903kbsyntheticsaccharomycescerevisiaechromosome
AT yizhicai constructionanditerativeredesignofsynxvia903kbsyntheticsaccharomycescerevisiaechromosome
AT royskwalker constructionanditerativeredesignofsynxvia903kbsyntheticsaccharomycescerevisiaechromosome
AT xinxu constructionanditerativeredesignofsynxvia903kbsyntheticsaccharomycescerevisiaechromosome
AT monicaiespinosa constructionanditerativeredesignofsynxvia903kbsyntheticsaccharomycescerevisiaechromosome
AT giovannistracquadanio constructionanditerativeredesignofsynxvia903kbsyntheticsaccharomycescerevisiaechromosome
AT joelsbader constructionanditerativeredesignofsynxvia903kbsyntheticsaccharomycescerevisiaechromosome
AT leslieamitchell constructionanditerativeredesignofsynxvia903kbsyntheticsaccharomycescerevisiaechromosome
AT jefdboeke constructionanditerativeredesignofsynxvia903kbsyntheticsaccharomycescerevisiaechromosome
AT thomascwilliams constructionanditerativeredesignofsynxvia903kbsyntheticsaccharomycescerevisiaechromosome
AT iantpaulsen constructionanditerativeredesignofsynxvia903kbsyntheticsaccharomycescerevisiaechromosome
AT isakspretorius constructionanditerativeredesignofsynxvia903kbsyntheticsaccharomycescerevisiaechromosome