Safety Analysis of Subway Station Under Seepage Force Using a Continuous Velocity Field

Groundwater is an important factor for the stability of the subway station pit constructed in the offshore area. To reflect the effects of groundwater drawdown on the stability of the station pit, this work uses a surface settlement formula based on Rayleigh distribution to construct a continuous de...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhufeng Cheng, De Zhou, Qiang Chen, Shuaifu Gu
Format: Article
Language:English
Published: MDPI AG 2025-08-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/15/2541
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Groundwater is an important factor for the stability of the subway station pit constructed in the offshore area. To reflect the effects of groundwater drawdown on the stability of the station pit, this work uses a surface settlement formula based on Rayleigh distribution to construct a continuous deformation velocity field based on Terzaghi’s mechanism, so as to derive a theoretical calculation method for the safety factor of the deep station pit anti-uplift considering the effect of seepage force. Taking the seepage force as an external load acting on the soil skeleton, a simplified calculation method is proposed to describe the variation in shear strength with depth. Substituting the external work rate induced by self-weight, surface surcharge, seepage force, and plastic shear energy into the energy equilibrium equation, an explicit expression of the safety factor of the station pit is obtained. According to the parameter study and engineering application analysis, the validity and applicability of the proposed procedure are discussed. The parameter study indicated that deep excavation pits are significantly affected by construction drawdown and seepage force; the presence of seepage, to some extent, reduces the anti-uplift stability of the station pit. The calculation method in this work helps to compensate for the shortcomings of existing methods and has a higher accuracy in predicting the safety and stability of station pits under seepage situations.
ISSN:2227-7390