Dynamics of a Class of Higher Order Difference Equations

We prove that all positive solutions of the autonomous difference equation xn=αxn−k/(1+xn−k+f(xn−1,…,xn−m)), n∈ℕ0, where k,m∈ℕ, and f is a continuous function satisfying the condition β min{u1,…,um}≤f(u1,…,um)≤β max{u1,…,um} for some β∈(0,1), converge to the positive equilibrium x¯=(α−1)/(β+1) if α&...

Full description

Saved in:
Bibliographic Details
Main Author: Bratislav D. Iricanin
Format: Article
Language:English
Published: Wiley 2007-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2007/73849
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We prove that all positive solutions of the autonomous difference equation xn=αxn−k/(1+xn−k+f(xn−1,…,xn−m)), n∈ℕ0, where k,m∈ℕ, and f is a continuous function satisfying the condition β min{u1,…,um}≤f(u1,…,um)≤β max{u1,…,um} for some β∈(0,1), converge to the positive equilibrium x¯=(α−1)/(β+1) if α>1.
ISSN:1026-0226
1607-887X