Leveraging Simplex Gradient Variance and Bias Reduction for Black-Box Optimization of Noisy and Costly Functions
Gradient variance errors in gradient-based search methods are largely mitigated using momentum, however the bias gradient errors may fail the numerical search methods in reaching the true optimum. We investigate the reduction in both bias and variance errors attributed to the simplex gradient estima...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2025-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10843234/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|