Polymer design for solvent separations by integrating simulations, experiments and known physics via machine learning

Abstract This study guides the discovery of sustainable high-performance polymer membranes for organic binary solvent separations. We focus on solvent diffusivity in polymers, a key factor in quantifying solvent transport. Traditional experimental and computational methods for determining diffusivit...

Full description

Saved in:
Bibliographic Details
Main Authors: Janhavi Nistane, Rohan Datta, Young Joo Lee, Harikrishna Sahu, Seung Soon Jang, Ryan Lively, Rampi Ramprasad
Format: Article
Language:English
Published: Nature Portfolio 2025-06-01
Series:npj Computational Materials
Online Access:https://doi.org/10.1038/s41524-025-01681-8
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract This study guides the discovery of sustainable high-performance polymer membranes for organic binary solvent separations. We focus on solvent diffusivity in polymers, a key factor in quantifying solvent transport. Traditional experimental and computational methods for determining diffusivity are time- and resource-intensive, while current machine learning (ML) models often lack accuracy outside their training domains. To overcome this, we fuse experimental and simulated diffusivity data to train physics-enforced multi-task ML models, achieving more robust predictions in unseen chemical spaces and outperforming single-task models in data-limited scenarios. Next, we address the challenge of identifying optimal membranes for a model toluene-heptane separation, identifying polyvinyl chloride (PVC) as the optimal membrane among 13,000 polymers, consistent with literature findings, thereby validating our methodology. Expanding our search, we screen 1 million publicly available and 7 million chemically recyclable polymers, identifying greener halogen-free alternatives to PVC. This capability is expected to advance membrane design for solvent separations.
ISSN:2057-3960