Martelli Chaotic Properties of a Generalized Form of Zadeh’s Extension Principle
Let X denote a compact metric space and let f : X→X be a continuous map. It is known that a discrete dynamical system (X,f) naturally induces its fuzzified counterpart, that is, a discrete dynamical system on the space of fuzzy compact subsets of X. In 2011, a new generalized form of Zadeh’s extensi...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | Journal of Applied Mathematics |
Online Access: | http://dx.doi.org/10.1155/2014/956467 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let X denote a compact metric space and let f : X→X be a continuous map. It is known that a discrete dynamical system (X,f) naturally induces its fuzzified counterpart, that is, a discrete dynamical system on the space of fuzzy compact subsets of X. In 2011, a new generalized form of Zadeh’s extension principle, so-called g-fuzzification, had been introduced by Kupka 2011. In this paper, we study the relations between Martelli’s chaotic properties of the original and g-fuzzified system. More specifically, we study the transitivity, sensitivity, and stability of the orbits in system (X,f) and its connections with the same ones in its g-fuzzified system. |
---|---|
ISSN: | 1110-757X 1687-0042 |