Structural Characterizations and Biological Evaluation of a Natural Polysaccharide from Branches of <i>Camellia oleifera</i> Abel
Background: <i>Camellia oleifera</i> Abel (<i>C. oleifera</i>) is widely cultivated and serves as an important source of edible oil. Yet, during oil production, pruned branches generate significant waste and contribute to environmental pollution. Objectives: In this work, we...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-01-01
|
Series: | Pharmaceuticals |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8247/18/1/51 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background: <i>Camellia oleifera</i> Abel (<i>C. oleifera</i>) is widely cultivated and serves as an important source of edible oil. Yet, during oil production, pruned branches generate significant waste and contribute to environmental pollution. Objectives: In this work, we obtain a natural polysaccharide from the branches of <i>C. oleifera</i> and optimize its extraction using Box–Behnken design (BBD), which is a statistical method commonly used in response surface methodology. Additionally, we study its properties, such as monosaccharide composition, structural features, antioxidant, and anti-inflammatory abilities. Results: BBD was employed to optimize polysaccharide extraction (solid-liquid ratio = 1:40; 90 °C; 130 min) for a higher yield. After purification, the major monosaccharides of branches of <i>C. oleifera’s</i> polysaccharide (CBP) were disclosed as glucose and galactose. Subsequent structural features of CBP were measured. The antioxidant and anti-inflammatory abilities were measured. The highly scavenging rates of the 2,2-diphenyl-1-picrylhydrazyl and hydroxyl radicals, with the chelating capacity of Fe<sup>2+</sup>, indicate potent antioxidant activity of CBP. Conclusions: In general, CBP demonstrated significant anti-inflammatory activity with down-regulating the expression of IL-6 and IL-1β in the LPS-induced macrophage RAW264.7 model. This bioactive polysaccharide adds value to waste branches by offering a novel approach to waste recycling and the development of <i>C. oleifera</i>. |
---|---|
ISSN: | 1424-8247 |