A Fubini Theorem in Riesz spaces for the Kurzweil-Henstock Integral
A Fubini-type theorem is proved, for the Kurzweil-Henstock integral of Riesz-space-valued functions defined on (not necessarily bounded) subrectangles of the “extended” real plane.
Saved in:
Main Authors: | A. Boccuto, D. Candeloro, A. R. Sambucini |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2011-01-01
|
Series: | Journal of Function Spaces and Applications |
Online Access: | http://dx.doi.org/10.1155/2011/158412 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Henstock-Kurzweil Integral Transforms
by: Salvador Sánchez-Perales, et al.
Published: (2012-01-01) -
The Closed Graph Theorem and the Space of Henstock-Kurzweil Integrable Functions with the Alexiewicz Norm
by: Luis Ángel Gutiérrez Méndez, et al.
Published: (2013-01-01) -
A Riesz Representation Theorem for the Space of Henstock Integrable Vector-Valued Functions
by: Tomás Pérez Becerra, et al.
Published: (2018-01-01) -
Existence Theory for Integrodifferential Equations and Henstock-Kurzweil Integral in Banach Spaces
by: Aneta Sikorska-Nowak
Published: (2007-01-01) -
The Use of an Isometric Isomorphism on the Completion of the Space of Henstock-Kurzweil Integrable Functions
by: Luis Ángel Gutiérrez Méndez, et al.
Published: (2013-01-01)