Efficiency Improved by H2 Forming Gas Treatment for Si-Based Solar Cell Applications

The photovoltaic (PV) effects have been investigated and improved using efficient treatments both on single-crystalline (sc) and on multicrystalline (mc) silicon (Si) solar cells. The major effect of forming gas (FG) treatment on solar cell performance is the fill-factor values, which increase 3.75%...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuang-Tung Cheng, Jyh-Jier Ho, William Lee, Song-Yeu Tsai, Liang-Yi Chen, Jia-Jhe Liou, Shun-Hsyung Chang, Huajun Shen, Kang L. Wang
Format: Article
Language:English
Published: Wiley 2010-01-01
Series:International Journal of Photoenergy
Online Access:http://dx.doi.org/10.1155/2010/634162
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The photovoltaic (PV) effects have been investigated and improved using efficient treatments both on single-crystalline (sc) and on multicrystalline (mc) silicon (Si) solar cells. The major effect of forming gas (FG) treatment on solar cell performance is the fill-factor values, which increase 3.75% and 8.28%, respectively, on sc-Si and mc-Si solar cells. As for the optimal 15%-H2 ratio and 40-minute FG treatment, the conversion efficiency (η) values drastically increase to 14.89% and 14.31%, respectively, for sc- and mc-Si solar cells. Moreover, we can measure the internal quantum efficiency (IQE) values increase with H2-FG treatment under visible wavelength (400~900 nm) radiation. Thus based on the work in this research, we confirm that H2 passivation has become crucial both in PV as well as in microelectronics fields. Moreover, the developed mc-Si solar cell by proper H2 FG treatment is quite suitable for commercial applications.
ISSN:1110-662X
1687-529X